Valentina Escott-Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035503/publications.pdf

Version: 2024-02-01

169 papers 40,569 citations

61 h-index 7518 151 g-index

208 all docs 208 docs citations

208 times ranked 37278 citing authors

#	Article	IF	CITATIONS
1	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	27.8	6,934
2	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
3	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
4	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
5	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	21.4	1,758
6	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
7	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
8	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	21.4	1,332
9	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 2011, 43, 977-983.	21.4	1,283
10	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
11	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
12	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
13	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
14	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
15	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
16	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
17	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
18	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623

#	Article	IF	CITATIONS
19	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	6.2	569
20	Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell, 2015, 162, 516-526.	28.9	514
21	Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain, 2015, 138, 3673-3684.	7.6	359
22	Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 2017, 49, 152-156.	21.4	350
23	A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nature Neuroscience, 2017, 20, 1052-1061.	14.8	330
24	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
25	The Penetrance of Copy Number Variations for Schizophrenia and Developmental Delay. Biological Psychiatry, 2014, 75, 378-385.	1.3	321
26	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	7.9	260
27	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 429-441.	7.9	250
28	Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry, 2016, 21, 749-757.	7.9	220
29	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
30	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	2.9	178
31	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	2.9	176
32	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
33	Cognitive Performance Among Carriers of Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects. Biological Psychiatry, 2017, 82, 103-110.	1.3	168
34	Polygenic score prediction captures nearly all common genetic risk for Alzheimer's disease. Neurobiology of Aging, 2017, 49, 214.e7-214.e11.	3.1	164
35	De novo induction of amyloid- \hat{l}^2 deposition in vivo. Molecular Psychiatry, 2012, 17, 1347-1353.	7.9	163
36	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155

#	Article	IF	CITATIONS
37	Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Annals of Neurology, 2017, 82, 311-314.	5.3	153
38	Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Molecular Psychiatry, 2011, 16, 2-4.	7.9	150
39	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
40	The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry, 2020, 88, 169-184.	1.3	137
41	Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. Journal of Medical Genetics, 2019, 56, 131-138.	3.2	121
42	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	6.2	119
43	Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia. JAMA Psychiatry, 2016, 73, 963.	11.0	118
44	Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Molecular Psychiatry, 2020, 25, 1430-1446.	7.9	116
45	Polygenic risk of <scp>P</scp> arkinson disease is correlated with disease age at onset. Annals of Neurology, 2015, 77, 582-591.	5.3	115
46	A Precision Medicine Initiative for Alzheimer's disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric, 2017, 20, 107-118.	2.4	112
47	Association of Genetic Liability to Psychotic Experiences With Neuropsychotic Disorders and Traits. JAMA Psychiatry, 2019, 76, 1256.	11.0	112
48	The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: Systematic review. Schizophrenia Research, 2018, 197, 2-8.	2.0	109
49	Longevity GWAS Using the <i>Drosophila </i> Genetic Reference Panel. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1470-1478.	3.6	105
50	Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. British Journal of Psychiatry, 2019, 214, 297-304.	2.8	102
51	De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience, 2020, 23, 179-184.	14.8	100
52	The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: A systematic review. Journal of Affective Disorders, 2018, 234, 148-155.	4.1	97
53	Association Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of Mood-Incongruent Psychotic Symptoms in Bipolar Disorder. JAMA Psychiatry, 2018, 75, 28.	11.0	91
54	Identifying individuals with high risk of Alzheimer's disease using polygenic risk scores. Nature Communications, 2021, 12, 4506.	12.8	91

#	Article	IF	CITATIONS
55	De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants. Biological Psychiatry, 2011, 70, 1109-1114.	1.3	85
56	Translating genetic risk of Alzheimer's disease into mechanistic insight and drug targets. Science, 2020, 370, 61-66.	12.6	84
57	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	3.1	78
58	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
59	A Population-Based Study of Genetic Variation and Psychotic Experiences in Adolescents. Schizophrenia Bulletin, 2014, 40, 1254-1262.	4.3	74
60	Machine learning for genetic prediction of psychiatric disorders: a systematic review. Molecular Psychiatry, 2021, 26, 70-79.	7.9	74
61	Genetic risk and age in Parkinson's disease: Continuum not stratum. Movement Disorders, 2015, 30, 850-854.	3.9	71
62	Genetic risk for alzheimer disease is distinct from genetic risk for amyloid deposition. Annals of Neurology, 2019, 86, 427-435.	5.3	70
63	Polygenic risk and hazard scores for Alzheimer's disease prediction. Annals of Clinical and Translational Neurology, 2019, 6, 456-465.	3.7	70
64	Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Translational Psychiatry, 2017, 7, 1264.	4.8	69
65	Polygenic dissection of the bipolar phenotype. British Journal of Psychiatry, 2011, 198, 284-288.	2.8	67
66	Genetic variability in response to amyloid beta deposition influences Alzheimer's disease risk. Brain Communications, 2019, 1, fcz022.	3.3	67
67	PRECISION MEDICINE - THE GOLDEN GATE FOR DETECTION, TREATMENT AND PREVENTION OF ALZHEIMER'S DISEASE. journal of prevention of Alzheimer's disease, The, 2016, 3, 1-17.	2.7	67
68	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	7.6	65
69	Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics, 2018, 19, 867.	2.8	61
70	The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry, 2013, 170, 877-885.	7.2	60
71	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	4.3	60
72	Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. Translational Psychiatry, 2018, 8, 39.	4.8	57

#	Article	IF	Citations
73	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	5.3	56
74	A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics, 2020, 29, 159-167.	2.9	54
7 5	The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	2.6	53
76	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	1.9	53
77	No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology, 2012, 78, 1038-1042.	1.1	52
78	Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women. JAMA Psychiatry, 2016, 73, 497.	11.0	51
79	The Correlation between Inflammatory Biomarkers and Polygenic Risk Score inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2017, 56, 25-36.	2.6	51
80	Genome-wide pooling approach identifies SPATA5 as a new susceptibility locus for alopecia areata. European Journal of Human Genetics, 2012, 20, 326-332.	2.8	48
81	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	2.9	48
82	Evaluation of cumulative cognitive deficits from electroconvulsive therapy. British Journal of Psychiatry, 2016, 208, 266-270.	2.8	48
83	The genomic basis of mood instability: identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function. Molecular Psychiatry, 2020, 25, 3091-3099.	7.9	48
84	Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer's disease. Brain, 2023, 146, 690-699.	7.6	44
85	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
86	Genome-wide association studies for Alzheimer's disease: bigger is not always better. Brain Communications, 2022, 4, .	3.3	44
87	Evaluation of an approximation method for assessment of overall significance of multipleâ€dependent tests in a genomewide association study. Genetic Epidemiology, 2011, 35, 861-866.	1.3	42
88	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41
89	Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA Psychiatry, 2021, 78, 1143.	11.0	41
90	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biological Psychiatry, 2019, 85, 554-562.	1.3	40

#	Article	IF	Citations
91	Disentangling the biological pathways involved in early features of Alzheimer's disease in the Rotterdam Study., 2018, 14, 848-857.		36
92	Assessing the relationship between monoallelic <i>PRKN</i> mutations and Parkinson's risk. Human Molecular Genetics, 2021, 30, 78-86.	2.9	36
93	Polygenic Risk Scores in Alzheimer's Disease: Current Applications and Future Directions. Frontiers in Digital Health, 2020, 2, 14.	2.8	34
94	<i>BRAF</i> and <i>NRAS</i> Locus-Specific Variants Have Different Outcomes on Survival to Colorectal Cancer. Clinical Cancer Research, 2017, 23, 2742-2749.	7.0	32
95	POLYGENIC RISK SCORE ANALYSIS OF ALZHEIMER'S DISEASE IN CASES WITHOUT APOE4 OR APOE2 ALLELES journal of prevention of Alzheimer's disease, The, 2018, 6, 1-4.	· 2.7	32
96	Comparison of Genetic Liability for Sleep Traits Among Individuals With Bipolar Disorder I or II and Control Participants. JAMA Psychiatry, 2020, 77, 303.	11.0	32
97	Age-dependent effect of APOE and polygenic component on Alzheimer's disease. Neurobiology of Aging, 2020, 93, 69-77.	3.1	32
98	Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiology of Disease, 2020, 142, 104953.	4.4	30
99	Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression. Translational Psychiatry, 2018, 8, 178.	4.8	29
100	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
101	From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review. Journal of Alzheimer's Disease, 2020, 74, 1271-1283.	2.6	29
102	Genetic risk for bipolar disorder and psychopathology from childhood to early adulthood. Journal of Affective Disorders, 2019, 246, 633-639.	4.1	27
103	Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 80-85.	1.7	27
104	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27
105	Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins. Brain Communications, 2022, 4, fcab308.	3.3	27
106	POLARIS: Polygenic LDâ€adjusted risk score approach for setâ€based analysis of GWAS data. Genetic Epidemiology, 2018, 42, 366-377.	1.3	25
107	Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease. PLoS ONE, 2019, 14, e0218111.	2.5	23
108	Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort. Psychological Medicine, 2019, 49, 2499-2504.	4.5	23

#	Article	IF	CITATIONS
109	Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Translational Psychiatry, 2020, 10, 309.	4.8	22
110	Permutation-based approaches do not adequately allow for linkage disequilibrium in gene-wide multi-locus association analysis. European Journal of Human Genetics, 2012, 20, 890-896.	2.8	20
111	Genetic liability to schizophrenia is negatively associated with educational attainment in UK Biobank. Molecular Psychiatry, 2020, 25, 703-705.	7.9	20
112	Proton pump inhibitors and dementia risk: Evidence from a cohort study using linked routinely collected national health data in Wales, UK. PLoS ONE, 2020, 15, e0237676.	2.5	20
113	Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease. Neurobiology of Aging, 2016, 48, 222.e1-222.e7.	3.1	19
114	No evidence that rare coding variants in <i>ZNF804A</i> confer risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1411-1416.	1.7	18
115	Is the <i>MC1R</i> variant p.R160W associated with Parkinson's?. Annals of Neurology, 2016, 79, 159-161.	5.3	18
116	Interleukin-10 family cytokines pathway: genetic variants and psoriasis. British Journal of Dermatology, 2017, 176, 1577-1587.	1.5	18
117	No evidence that extended tracts of homozygosity are associated with Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 764-771.	1.7	17
118	Genetic common variants associated with cerebellar volume and their overlap with mental disorders: a study on 33,265 individuals from the UK-Biobank. Molecular Psychiatry, 2022, 27, 2282-2290.	7.9	17
119	Association between <i>TCF4</i> and schizophrenia does not exert its effect by common nonsynonymous variation or by influencing <i>cis</i> êecting regulation of mRNA expression in adult human brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 781-784.	1.7	16
120	Genes, pathways and risk prediction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, R235-R240.	2.9	16
121	Association of Whole-Genome and NETRIN1 Signaling Pathway–Derived Polygenic Risk Scores for Major Depressive Disorder and White Matter Microstructure in the UK Biobank. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 91-100.	1.5	16
122	Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the UK Biobank. PLoS ONE, 2021, 16, e0249189.	2.5	16
123	Investigating associations between genetic risk for bipolar disorder and cognitive functioning in childhood. Journal of Affective Disorders, 2019, 259, 112-120.	4.1	14
124	Defining functional variants associated with Alzheimer's disease in the induced immune response. Brain Communications, 2021, 3, fcab083.	3.3	14
125	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
126	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12

#	Article	IF	CITATIONS
127	Machine learning for the life-time risk prediction of Alzheimer's disease: a systematic review. Brain Communications, 2021, 3, fcab246.	3.3	12
128	Post-partum psychosis and its association with bipolar disorder in the UK: a case-control study using polygenic risk scores. Lancet Psychiatry,the, 2021, 8, 1045-1052.	7.4	12
129	An Examination of Single Nucleotide Polymorphism Selection Prioritization Strategies for Tests of Gene–Gene Interaction. Biological Psychiatry, 2011, 70, 198-203.	1.3	10
130	Gender differences in CNV burden do not confound schizophrenia CNV associations. Scientific Reports, 2016, 6, 25986.	3.3	10
131	Genetic analysis suggests high misassignment rates in clinical Alzheimer's cases and controls. Neurobiology of Aging, 2019, 77, 178-182.	3.1	10
132	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank. American Journal of Psychiatry, 2019, 176, 661-666.	7.2	10
133	Pattern Recognition Receptor Polymorphisms as Predictors of Oxaliplatin Benefit in Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 828-836.	6.3	10
134	Comprehensive analysis of colorectal cancer-risk loci and survival outcome: A prognostic role for CDH1 variants. European Journal of Cancer, 2020, 124, 56-63.	2.8	10
135	Probability of Alzheimer's disease based on common and rare genetic variants. Alzheimer's Research and Therapy, 2021, 13, 140.	6.2	10
136	A dataâ€driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genomeâ€wide significant genetic loci. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 468-475.	1.7	9
137	Effects of genomic copy number variants penetrant for schizophrenia on cortical thickness and surface area in healthy individuals: analysis of the UK Biobank. British Journal of Psychiatry, 2021, 218, 104-111.	2.8	8
138	Genomic profiling and diagnostic biomarkers in Alzheimer's disease. Lancet Neurology, The, 2017, 16, 582-583.	10.2	7
139	Genomeâ€wide association studies of toxicity to oxaliplatin and fluoropyrimidine chemotherapy with or without cetuximab in 1800 patients with advanced colorectal cancer. International Journal of Cancer, 2021, 149, 1713-1722.	5.1	7
140	A genome-wide search for determinants of survival in 1926 patients with advanced colorectal cancer with follow-up in over 22,000 patients. European Journal of Cancer, 2021, 159, 247-258.	2.8	6
141	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank: Response to Lawn et al American Journal of Psychiatry, 2019, 176, 574-575.	7.2	5
142	No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci. PLoS ONE, 2015, 10, e0144172.	2.5	4
143	Cognitive Decline in Alzheimer's Disease Is Not Associated with APOE. Journal of Alzheimer's Disease, 2021, 84, 141-149.	2.6	4
144	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 1696-1696.	2.9	3

#	Article	IF	CITATIONS
145	How allele frequency and study design affect association test statistics with misrepresentation errors. Biostatistics, 2014, 15, 311-326.	1.5	3
146	Genetic variation in <i>ST6GAL1</i> is a determinant of capecitabine and oxaliplatin induced handâ€foot syndrome. International Journal of Cancer, 2022, , .	5.1	3
147	Challenges of Adjusting Single-Nucleotide Polymorphism Effect Sizes for Linkage Disequilibrium. Human Heredity, 2020, 85, 24-34.	0.8	2
148	Exploring the indirect effects of catecholâ€Oâ€methyltransferase (<i>COMT</i>) genotype on psychotic experiences through cognitive function and anxiety disorders in a large birth cohort of children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 410-420.	1.7	1
149	P2â€082: Comparison of Geneâ€Based Methods to Identify Novel Alzheimer's Disease–Associated Genes. Alzheimer's and Dementia, 2016, 12, P640.	0.8	0
150	P4â€111: Alzheimer's Disease Detection at the Preclinical Stage Using a Novel SNP Genotyping Array. Alzheimer's and Dementia, 2016, 12, P1054.	0.8	0
151	P4â€126: Evaluation of a Novel Array of SNP (Single Nucleotide Polymorphism) Markers in Amyloidâ€PET Stratified Samples from MCI and Cognitively Normal Individuals. Alzheimer's and Dementia, 2016, 12, P1061.	0.8	0
152	O1-06-05: Polygenic Scoring for Risk Stratification of Future Cognitive Decline in Mild Cognitive Impairment (MCI)., 2016, 12, P187-P187.		0
153	P1â€130: Why Geneâ€Gene Interactions are Difficult to Find and Often Impossible to Replicate. Alzheimer's and Dementia, 2016, 12, P453.	0.8	0
154	Identification of Biological Pathways to Alzheimer's Disease Using Polygenic Scores. European Psychiatry, 2017, 41, \$166-\$167.	0.2	0
155	[P1–134]: ENRICHMENT OF AMYLOIDâ€POSITIVE SAMPLES BY PET FROM EARLY SYMPTOMATIC AND PRODROMAL COHORT. Alzheimer's and Dementia, 2017, 13, P293.	0.8	0
156	[P1–139]: PATHWAY‧PECIFIC GENETIC RISK SCORE ASSOCIATED WITH ALZHEIMER's DISEASE AND WHITE MATTER LESIONS IN COGNITIVELY NORMAL SUBJECTS. Alzheimer's and Dementia, 2017, 13, P295.	0.8	0
157	[P2–110]: NOVEL APPROACH TO GENEâ€BASED ANALYSIS OF ALZHEIMER's DISEASE INFORMED BY GENETICS PSYCHIATRIC DISORDERS. Alzheimer's and Dementia, 2017, 13, P649.	OF 0.8	0
158	P1â€152: GENEâ€BASED ANALYSIS IN HRC IMPUTED GERAD GWAS. Alzheimer's and Dementia, 2018, 14, P335.	0.8	0
159	P2â€120: PSYCHOSIS IN ALZHEIMER'S DISEASE IS NOT ASSOCIATED WITH GENETIC LIABILITY FOR SCHIZOPHRENIA. Alzheimer's and Dementia, 2018, 14, P715.	0.8	0
160	P2â€112: NEXT GENERATION EXOME SEQUENCING IN A LARGE SAMPLE OF ALZHEIMER'S PATIENTS. Alzheimer's and Dementia, 2018, 14, P712.	0.8	0
161	P3â€248: STRATIFICATION OF INDIVIDUALS FOR PET AMYLOID POSITIVITY AND ALZHEIMER'S DISEASE RISK USIN POLYGENIC RISK SCORE ANALYSIS: NEW OPPORTUNITIES FOR CLINICAL TRIAL DESIGN. Alzheimer's and Dementia, 2018, 14, P1168.	G 0.8	0
162	P2â€307: GENETIC ANALYSIS SUGGESTS HIGH MISASSIGNMENT RATE IN BOTH ALZHEIMER'S DISEASE CASES AND CONTROLS. Alzheimer's and Dementia, 2018, 14, P800.	D _{0.8}	0

#	Article	IF	CITATIONS
163	P2â€122: COMPARING RESULTS OF POLYGENIC RISK SCORE AND POLYGENIC HAZARD SCORE IN PREDICTION OF AGE SPECIFIC RISK FOR DEVELOPING ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P715.	F _{0.8}	0
164	P3â€137: DECONVOLUTING THE DEMENTIA PHENOTYPE USING FUNCTIONAL COMPUTATIONAL APPROACHES. Alzheimer's and Dementia, 2018, 14, P1120.	0.8	0
165	P017â€Differences in genetic risk for insomnia, hypersomnia and chronotype in bipolar disorder subtypes. , 2019, , .		O
166	Genomeâ€wide association study of progression in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040950.	0.8	0
167	Using polygenic risk scores to assess the importance of microglia in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042918.	0.8	0
168	Using polygenic risk score approaches to investigate the common-variant genetic architecture of schizophrenia. V M Bekhterev Review of Psychiatry and Medical Psychology, 2019, , 8-11.	0.4	0
169	Genetics: Genome-wide data processing for polygenic risk scores Alzheimer's and Dementia, 2021, 17 Suppl 3, e054946.	0.8	0