Rosario Cosentino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035310/publications.pdf Version: 2024-02-01

1

#	Article	IF	CITATIONS
1	K2-79b and K2-222b: Mass Measurements of Two Small Exoplanets with Periods beyond 10 days that Overlap with Periodic Magnetic Activity Signals. Astronomical Journal, 2022, 163, 41.	4.7	3
2	Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks. Astronomical Journal, 2022, 164, 49.	4.7	20
3	Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere. Nature, 2021, 592, 205-208.	27.8	99
4	Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1699-1717.	4.4	44
5	Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities. Astronomical Journal, 2021, 161, 287.	4.7	17
6	An unusually low density ultra-short period super-Earth and three mini-Neptunes around the old star TOI-561. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4148-4166.	4.4	32
7	Estimating Magnetic Filling Factors from Simultaneous Spectroscopy and Photometry: Disentangling Spots, Plage, and Network. Astrophysical Journal, 2021, 920, 21.	4.5	10
8	Wolf 503 b: Characterization of a Sub-Neptune Orbiting a Metal-poor K Dwarf. Astronomical Journal, 2021, 162, 238.	4.7	5
9	TOI-1235 b: A Keystone Super-Earth for Testing Radius Valley Emergence Models around Early M Dwarfs. Astronomical Journal, 2020, 160, 22.	4.7	33
10	Neutral Iron Emission Lines from the Dayside of KELT-9b: The GAPS Program with HARPS-N at TNG XX. Astrophysical Journal Letters, 2020, 894, L27.	8.3	84
11	A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780. Astronomical Journal, 2020, 160, 3.	4.7	62
12	K2-111: an old system with two planets in near-resonanceâ€. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5004-5021.	4.4	22
13	TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group. Astronomical Journal, 2020, 160, 179.	4.7	68
14	Testing the Spectroscopic Extraction of Suppression of Convective Blueshift. Astrophysical Journal, 2020, 888, 117.	4.5	15
15	Design and development of the SOXS calibration unit. , 2020, , .		3
16	The SOXS data-reduction pipeline. , 2020, , .		2
17	Final design and development status of the acquisition and guiding system for SOXS. , 2020, , .		2

18 Development status of the SOXS instrument control software. , 2020, , .

#	Article	IF	CITATIONS
19	The AIV strategy of the common path of Son Of X-Shooter. , 2020, , .		2
20	Design and validation of the boot software for the instrument control unit of the PLATO mission. , 2020, , .		0
21	SOXS: effects on optical performances due to gravity flexures, temperature variations, and subsystems alignment. , 2020, , .		2
22	Manufacturing, integration, and mechanical verification of SOXS. , 2020, , .		3
23	A combined software and hardware data compression approach in PLATO. , 2020, , .		1
24	Progress on the UV-VIS arm of SOXS. , 2020, , .		5
25	The instrument control unit of the PLATO payload: design consolidation following the preliminary design review by ESA. , 2020, , .		0
26	SOXS end-to-end simulator: development and applications for pipeline design. , 2020, , .		3
27	Progress and tests on the instrument control electronics for SOXS. , 2020, , .		2
28	Operational modes and efficiency of SOXS. , 2020, , .		2
29	Development status of the UV-VIS detector system of SOXS for the ESO-NTT telescope. , 2020, , .		3
30	The development status of the NIR Arm of the new SoXS instrument at the ESO/NTT telescope. , 2020, , .		2
31	Development status of the SOXS spectrograph for the ESO-NTT telescope. , 2020, , .		4
32	An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star. Astronomical Journal, 2019, 158, 165.	4.7	14
33	Using HARPS-N to characterize the long-period planets in the PH-2 and Kepler-103 systems. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5103-5121.	4.4	10
34	Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1082-1100.	4.4	81
35	HARPS-N radial velocities confirm the low densities of the Kepler-9 planets. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3233-3243.	4.4	28
36	HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions. Astrophysical Journal, 2019, 874, 107.	4.5	59

#	Article	IF	CITATIONS
37	A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nature Astronomy, 2019, 3, 416-423.	10.1	64
38	An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141. Astronomical Journal, 2018, 155, 107.	4.7	103
39	Introducing GOFIO: a DRS for the GIANO-B near-infrared spectrograph. , 2018, , .		3
40	GIARPS: commissioning and first scientific results. , 2018, , .		8
41	The design of the instrument control unit and its role within the data processing system of the ESA PLATO Mission. , 2018, , .		3
42	BATMAN @ TNC: instrument integration and performance. , 2018, , .		0
43	SOXS: a wide band spectrograph to follow up transients. , 2018, , .		9
44	The NIR spectrograph for the new SOXS instrument at the NTT. , 2018, , .		1
45	MITS: the Multi-Imaging Transient Spectrograph for SOXS. , 2018, , .		7
46	SOXS control electronics design. , 2018, , .		4
47	The assembly integration and test activities for the new SOXS instrument at NTT. , 2018, , .		6
48	The acquisition camera system for SOXS at NTT. , 2018, , .		5
49	Architecture of the SOXS instrument control software. , 2018, , .		3
50	Optical design of the SOXS spectrograph for ESO NTT. , 2018, , .		4
51	The VIS detector system of SOXS. , 2018, , .		4
52	GIANO-B online data reduction software at the TNG. , 2018, , .		1
53	The common path of SOXS (Son of X-Shooter). , 2018, , .		7
54	The mechanical design of SOXS for the NTT. , 2018, , .		9

1

#	Article	IF	CITATIONS
55	The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations. Astronomical Journal, 2017, 153, 224.	4.7	58
56	Three's Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets. Astronomical Journal, 2017, 154, 122.	4.7	90
57	Precise Masses in the WASP-47 System. Astronomical Journal, 2017, 154, 237.	4.7	66
58	KEPLER-21b: A ROCKY PLANET AROUND A VÂ=Â8.25 mag STAR*. Astronomical Journal, 2016, 152, 204.	4.7	80
59	A 1.9 EARTH RADIUS ROCKY PLANET AND THE DISCOVERY OF A NON-TRANSITING PLANET IN THE KEPLER-20 SYSTEM*. Astronomical Journal, 2016, 152, 160.	4.7	85
60	An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus. Proceedings of SPIE, 2016, , .	0.8	22
61	THE KEPLER-454 SYSTEM: A SMALL, NOT-ROCKY INNER PLANET, A JOVIAN WORLD, AND A DISTANT COMPANION. Astrophysical Journal, 2016, 816, 95.	4.5	55
62	The HARPS-North@TNG polarimeter. , 2016, , .		2
63	COORDINATED X-RAY AND OPTICAL OBSERVATIONS OF STAR–PLANET INTERACTION IN HD 17156. Astrophysical Journal Letters, 2015, 811, L2.	8.3	58
64	THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS. Astrophysical Journal, 2015, 800, 135.	4.5	211
65	CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454. Astrophysical Journal, 2015, 800, 59.	4.5	104
66	HARPS-N OBSERVES THE SUN AS A STAR. Astrophysical Journal Letters, 2015, 814, L21.	8.3	112
67	THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET. Astrophysical Journal, 2014, 789, 154.	4.5	164
68	BATMAN: a DMD-based multi-object spectrograph on Galileo telescope. , 2014, , .		7
69	A polarimetric unit for HARPS-North at the Telescopio Nazionale Galileo: HANPO. Proceedings of SPIE, 2014, , .	0.8	2
70	HARPS-N @ TNG, two year harvesting data: performances and results. Proceedings of SPIE, 2014, , .	0.8	34
71	An Earth-sized planet with an Earth-like density. Nature, 2013, 503, 377-380.	27.8	199

72 BATMAN: a DMD-based MOS demonstrator on Galileo Telescope. , 2012, , .

4

#	Article	IF	CITATIONS
73	Conceptual design of the data handling system for the European Solar Telescope. , 2012, , .		0
74	Harps-N: the new planet hunter at TNG. Proceedings of SPIE, 2012, , .	0.8	219
75	Planet candidates from the SARG visual binary survey. Proceedings of the International Astronomical Union, 2010, 6, 403-404.	0.0	2
76	Data handling and control for the European Solar Telescope. Proceedings of SPIE, 2010, , .	0.8	1
77	A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES. Astrophysical Journal, 2010, 713, 935-949.	4.5	78
78	Path to the stars: the evolution of the species in the hunting to the GRBs. , 2010, , .		2
79	A Path to the Stars: The Evolution of the Species. Advances in Astronomy, 2010, 2010, 1-14.	1.1	1
80	A Multisite Campaign to Measure Solarâ€like Oscillations in Procyon. I. Observations, Data Reduction, and Slow Variations. Astrophysical Journal, 2008, 687, 1180-1190.	4.5	128
81	Observations of Mercury's exosphere: Spatial distributions and variations of its Na component during August 8, 9 and 10, 2003. Icarus, 2006, 185, 395-402.	2.5	14
82	The X-shooter Spectrograph: A Second Generation Instrument for the VLT. Research in Astronomy and Astrophysics, 2006, 6, 361-364.	1.1	0
83	A New Generation of Data and Control Interfaces for Digital Detectors. , 2006, , 679-684.		1
84	First observations of the Na exosphere of Mercury with the high-resolution spectrograph of the 3.5M Telescopio Nazionale Galileo. Planetary and Space Science, 2004, 52, 1169-1175.	1.7	13
85	The new active optics system of TNG. , 2004, , .		0
86	Instrument remote control project at TNG: SARG implementation. , 2004, , .		0
87	Silicon planar technology for single-photon optical detectors. , 2004, , .		9
88	Silicon planar technology for single-photon optical detectors. IEEE Transactions on Electron Devices, 2003, 50, 918-925.	3.0	82
89	High-resolution spectropolarimetry at the Italian Telescopio Nazionale Galileo. , 2003, , .		3

90 Progress on photon-counting intensified APS. , 2003, 4854, 583.

#	Article	IF	CITATIONS
91	SARG: The High Resolution Spectrograph of TNG. Experimental Astronomy, 2001, 12, 107-143.	3.7	56
92	Metal Abundances of Red Clump Stars in Open Clusters. I. NGC 6819. Astronomical Journal, 2001, 121, 327-336.	4.7	154
93	Design study of an adaptive optics visual echelle spectrograph and imager for the VLT. , 2000, , .		3
94	Tests of SARC: the high-resolution spectrograph for TNG. , 2000, , .		2
95	<title>High-resolution spectrograph of TNG: a status report</title> . , 1998, , .		0
96	<title>AIRWATCH: the fast detector</title> ., 1998, 3445, 486.		1
97	<title>AIR WATCH: air-induced fluorescence by radiation laboratory experiments</title> . , 1998, , .		2
98	<title>Catania Astrophysical Observatory facility for UV CCD characterization</title> . , 1996, , .		12
99	<title>CCD cameras for the Italian national telescope Galileo</title> ., 1996, , .		7