Jana N Radin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035106/publications.pdf Version: 2024-02-01

ΙΔΝΙΔ Ν ΡΔΟΙΝ

#	Article	IF	CITATIONS
1	Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. MBio, 2022, 13, .	4.1	9
2	Staphylococcus aureus Preferentially Liberates Inorganic Phosphate from Organophosphates in Environments where This Nutrient Is Limiting. Journal of Bacteriology, 2020, 202, .	2.2	4
3	Identification of Zinc-Dependent Mechanisms Used by Group B <i>Streptococcus</i> To Overcome Calprotectin-Mediated Stress. MBio, 2020, 11, .	4.1	30
4	Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infection and Immunity, 2020, 88, .	2.2	4
5	Intracellular Accumulation of Staphylopine Can Sensitize Staphylococcus aureus to Host-Imposed Zinc Starvation by Chelation-Independent Toxicity. Journal of Bacteriology, 2020, 202, .	2.2	18
6	Metal-independent variants of phosphoglycerate mutase promote resistance to nutritional immunity and retention of glycolysis during infection. PLoS Pathogens, 2019, 15, e1007971.	4.7	23
7	Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during <i>Staphylococcus aureus</i> Infection. Infection and Immunity, 2019, 87, .	2.2	34
8	Acquisition of the Phosphate Transporter NptA Enhances Staphylococcus aureus Pathogenesis by Improving Phosphate Uptake in Divergent Environments. Infection and Immunity, 2018, 86, .	2.2	20
9	Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infection and Immunity, 2018, 86, .	2.2	98
10	PhoPR Contributes to Staphylococcus aureus Growth during Phosphate Starvation and Pathogenesis in an Environment-Specific Manner. Infection and Immunity, 2018, 86, .	2.2	21
11	The Metallophore Staphylopine Enables <i>Staphylococcus aureus</i> To Compete with the Host for Zinc and Overcome Nutritional Immunity. MBio, 2017, 8, .	4.1	106
12	The Two-Component System ArlRS and Alterations in Metabolism Enable Staphylococcus aureus to Resist Calprotectin-Induced Manganese Starvation. PLoS Pathogens, 2016, 12, e1006040.	4.7	71
13	The Host Protein Calprotectin Modulates the Helicobacter pylori cag Type IV Secretion System via Zinc Sequestration. PLoS Pathogens, 2014, 10, e1004450.	4.7	78
14	Role of Connexin 43 in Helicobacter pylori VacA-Induced Cell Death. Infection and Immunity, 2014, 82, 423-432.	2.2	37
15	Helicobacter pylori VacA Induces Programmed Necrosis in Gastric Epithelial Cells. Infection and Immunity, 2011, 79, 2535-2543.	2.2	99