Anja K Bielinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035055/publications.pdf

Version: 2024-02-01

236925 243625 2,095 58 25 44 citations h-index g-index papers 112 112 112 2199 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	<i>SLFN11</i> promotes stalled fork degradation that underlies the phenotype in Fanconi anemia cells. Blood, 2021, 137, 336-348.	1.4	17
2	Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. International Journal of Molecular Sciences, 2021, 22, 911.	4.1	23
3	12621 Targeted Chemical-Genetic Screen Platform for Identifying Drug Modes-of-Action. Journal of Clinical and Translational Science, 2021, 5, 101-102.	0.6	O
4	Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nature Communications, 2021, 12, 1626.	12.8	22
5	SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. International Journal of Molecular Sciences, 2021, 22, 5391.	4.1	25
6	BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nature Communications, 2021, 12, 5966.	12.8	39
7	Functional cross talk between the Fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery. Human Molecular Genetics, 2020, 29, 1083-1095.	2.9	21
8	Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nature Communications, 2020, 11, 2147.	12.8	71
9	EXO1 resection at G-quadruplex structures facilitates resolution and replication. Nucleic Acids Research, 2020, 48, 4960-4975.	14.5	26
10	Human NK cell deficiency as a result of biallelic mutations in MCM10. Journal of Clinical Investigation, 2020, 130, 5272-5286.	8.2	44
11	The anti-parasitic agent suramin and several of its analogues are inhibitors of the DNA binding protein Mcm10. Open Biology, 2019, 9, 190117.	3.6	15
12	Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes, 2019, 10, 10.	2.4	69
13	Crystal Structure of Entamoeba histolytica Cdc45 Suggests a Conformational Switch that May Regulate DNA Replication. IScience, 2018, 3, 102-109.	4.1	2
14	Flap endonuclease overexpression drives genome instability and DNA damage hypersensitivity in a PCNA-dependent manner. Nucleic Acids Research, 2018, 46, 5634-5650.	14.5	35
15	Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes, 2017, 8, 73.	2.4	67
16	Rapid DNA replication origin licensing protects stem cell pluripotency. ELife, 2017, 6, .	6.0	79
17	Not just for coding: a new role for histone tails in replication enzyme activation. FEBS Journal, 2016, 283, 4244-4246.	4.7	0
18	Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. Cell Reports, 2016, 15, 1254-1265.	6.4	26

#	Article	IF	Citations
19	Mapping ubiquitination sites of S. cerevisiae Mcm10. Biochemistry and Biophysics Reports, 2016, 8, 212-218.	1.3	3
20	Mcm10: The glue at replication forks. Cell Cycle, 2016, 15, 3024-3025.	2.6	12
21	Penetrating enemy territory: Soluble PCNA-peptides stress out MYCN-overexpressing neuroblastomas. EBioMedicine, 2015, 2, 1844-1845.	6.1	0
22	Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genetics, 2015, 11, e1005659.	3.5	24
23	elF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor Cells. Cancer Research, 2015, 75, 687-697.	0.9	12
24	Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle, 2014, 13, 1737-1748.	2.6	26
25	The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage. Nucleic Acids Research, 2014, 42, 8389-8404.	14.5	21
26	MCM10: One tool for allâ€"Integrity, maintenance and damage control. Seminars in Cell and Developmental Biology, 2014, 30, 121-130.	5.0	45
27	Enigmatic roles of Mcm10 in DNA replication. Trends in Biochemical Sciences, 2013, 38, 184-194.	7.5	64
28	RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes and Development, 2013, 27, 2259-2273.	5.9	98
29	Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS ONE, 2013, 8, e66379.	2.5	21
30	Mcm10 Self-Association Is Mediated by an N-Terminal Coiled-Coil Domain. PLoS ONE, 2013, 8, e70518.	2.5	16
31	Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biology, 2010, 12, 74-79.	10.3	63
32	Ubc4 and Not4 Regulate Steady-State Levels of DNA Polymerase-α to Promote Efficient and Accurate DNA Replication. Molecular Biology of the Cell, 2010, 21, 3205-3219.	2.1	23
33	HDM2 ERKs PCNA. Journal of Cell Biology, 2010, 190, 487-489.	5.2	2
34	Damage-specific modification of PCNA. Cell Cycle, 2010, 9, 3698-3703.	2.6	12
35	Termination at sTop2. Molecular Cell, 2010, 39, 487-489.	9.7	3
36	Defects in DNA Ligase I Trigger PCNA Ubiquitination at Lysine 107. FASEB Journal, 2010, 24, 492.5.	0.5	0

#	Article	IF	CITATIONS
37	Replication Initiation Point Mapping: Approach and Implications. Methods in Molecular Biology, 2009, 521, 105-120.	0.9	4
38	Analyzing Origin Activation Patterns by Copy Number Change Experiments. Methods in Molecular Biology, 2009, 521, 279-294.	0.9	0
39	Structural Basis for DNA Binding by Replication Initiator Mcm10. Structure, 2008, 16, 1892-1901.	3.3	53
40	Multiple roles for Mcm10 during lagging strand synthesis. FASEB Journal, 2008, 22, 111.2.	0.5	O
41	Human Mcm 10 Regulates the Catalytic Subunit of DNA Polymerase- $\hat{l}\pm$ and Prevents DNA Damage during Replication. Molecular Biology of the Cell, 2007, 18, 4085-4095.	2.1	78
42	Scarce but scary. Nature Genetics, 2007, 39, 707-708.	21.4	2
43	Encircled: Large-Scale Purification of Replication Origins from Mammalian Chromosomes. Molecular Cell, 2006, 21, 735-736.	9.7	0
44	Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO Journal, 2006, 25, 3627-3639.	7.8	68
45	The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Research, 2006, 34, 5069-5080.	14.5	16
46	A Conserved Hsp10-like Domain in Mcm10 Is Required to Stabilize the Catalytic Subunit of DNA Polymerase-α in Budding Yeast. Journal of Biological Chemistry, 2006, 281, 18414-18425.	3.4	49
47	Interaction between PCNA and Diubiquitinated Mcm10 Is Essential for Cell Growth in Budding Yeast. Molecular and Cellular Biology, 2006, 26, 4806-4817.	2.3	69
48	Easy detection of chromatin binding proteins by the histone association assay. Biological Procedures Online, 2005, 7, 60-69.	2.9	28
49	Mcm 10 Regulates the Stability and Chromatin Association of DNA Polymerase- $\hat{l}\pm$. Molecular Cell, 2004, 16, 173-185.	9.7	190
50	Replication Origins: Why Do We Need So Many?. Cell Cycle, 2003, 2, 306-308.	2.6	23
51	Replication origins: why do we need so many?. Cell Cycle, 2003, 2, 307-9.	2.6	15
52	DNA replication and chromatin. Current Opinion in Genetics and Development, 2002, 12, 243-248.	3.3	56
53	Origin recognition complex binding to a metazoan replication origin. Current Biology, $2001, 11, 1427-1431.$	3.9	71
54	Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. International Immunology, 1999, 11, 1265-1274.	4.0	57

#	Article	IF	CITATION
55	Chromosomal ARS1 Has a Single Leading Strand Start Site. Molecular Cell, 1999, 3, 477-486.	9.7	106
56	Replication Initiation Point Mapping. Methods, 1997, 13, 271-280.	3.8	89
57	Divalent cations (Mg2+, Ca2+) differentially influence the beta1 integrin-mediated migration of human fibroblasts and keratinocytes to different extracellular matrix proteins. Experimental Dermatology, 1995, 4, 130-137.	2.9	16
58	Mg2+ and Ca2+ Differentially Regulate $\hat{1}^21$ Integrin-Mediated Adhesion of Dermal Fibroblasts and Keratinocytes to Various Extracellular Matrix Proteins. Experimental Cell Research, 1994, 214, 381-388.	2.6	64