List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035055/publications.pdf Version: 2024-02-01

ANIA K RIFLINGKY

#	Article	IF	CITATIONS
1	Mcm10 Regulates the Stability and Chromatin Association of DNA Polymerase-α. Molecular Cell, 2004, 16, 173-185.	9.7	190
2	Chromosomal ARS1 Has a Single Leading Strand Start Site. Molecular Cell, 1999, 3, 477-486.	9.7	106
3	RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes and Development, 2013, 27, 2259-2273.	5.9	98
4	Replication Initiation Point Mapping. Methods, 1997, 13, 271-280.	3.8	89
5	Rapid DNA replication origin licensing protects stem cell pluripotency. ELife, 2017, 6, .	6.0	79
6	Human Mcm10 Regulates the Catalytic Subunit of DNA Polymerase-α and Prevents DNA Damage during Replication. Molecular Biology of the Cell, 2007, 18, 4085-4095.	2.1	78
7	Origin recognition complex binding to a metazoan replication origin. Current Biology, 2001, 11, 1427-1431.	3.9	71
8	Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly. Nature Communications, 2020, 11, 2147.	12.8	71
9	Interaction between PCNA and Diubiquitinated Mcm10 Is Essential for Cell Growth in Budding Yeast. Molecular and Cellular Biology, 2006, 26, 4806-4817.	2.3	69
10	Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes, 2019, 10, 10.	2.4	69
11	Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO Journal, 2006, 25, 3627-3639.	7.8	68
12	Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes, 2017, 8, 73.	2.4	67
13	Mg2+ and Ca2+ Differentially Regulate β1 Integrin-Mediated Adhesion of Dermal Fibroblasts and Keratinocytes to Various Extracellular Matrix Proteins. Experimental Cell Research, 1994, 214, 381-388.	2.6	64
14	Enigmatic roles of Mcm10 in DNA replication. Trends in Biochemical Sciences, 2013, 38, 184-194.	7.5	64
15	Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biology, 2010, 12, 74-79.	10.3	63
16	Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. International Immunology, 1999, 11, 1265-1274.	4.0	57
17	DNA replication and chromatin. Current Opinion in Genetics and Development, 2002, 12, 243-248.	3.3	56
18	Structural Basis for DNA Binding by Replication Initiator Mcm10. Structure, 2008, 16, 1892-1901.	3.3	53

#	Article	IF	CITATIONS
19	A Conserved Hsp10-like Domain in Mcm10 Is Required to Stabilize the Catalytic Subunit of DNA Polymerase-α in Budding Yeast. Journal of Biological Chemistry, 2006, 281, 18414-18425.	3.4	49
20	MCM10: One tool for all—Integrity, maintenance and damage control. Seminars in Cell and Developmental Biology, 2014, 30, 121-130.	5.0	45
21	Human NK cell deficiency as a result of biallelic mutations in MCM10. Journal of Clinical Investigation, 2020, 130, 5272-5286.	8.2	44
22	BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage. Nature Communications, 2021, 12, 5966.	12.8	39
23	Flap endonuclease overexpression drives genome instability and DNA damage hypersensitivity in a PCNA-dependent manner. Nucleic Acids Research, 2018, 46, 5634-5650.	14.5	35
24	Easy detection of chromatin binding proteins by the histone association assay. Biological Procedures Online, 2005, 7, 60-69.	2.9	28
25	Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle, 2014, 13, 1737-1748.	2.6	26
26	Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. Cell Reports, 2016, 15, 1254-1265.	6.4	26
27	EXO1 resection at G-quadruplex structures facilitates resolution and replication. Nucleic Acids Research, 2020, 48, 4960-4975.	14.5	26
28	SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. International Journal of Molecular Sciences, 2021, 22, 5391.	4.1	25
29	Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genetics, 2015, 11, e1005659.	3.5	24
30	Replication Origins: Why Do We Need So Many?. Cell Cycle, 2003, 2, 306-308.	2.6	23
31	Ubc4 and Not4 Regulate Steady-State Levels of DNA Polymerase-α to Promote Efficient and Accurate DNA Replication. Molecular Biology of the Cell, 2010, 21, 3205-3219.	2.1	23
32	Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. International Journal of Molecular Sciences, 2021, 22, 911.	4.1	23
33	Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nature Communications, 2021, 12, 1626.	12.8	22
34	Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS ONE, 2013, 8, e66379.	2.5	21
35	The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage. Nucleic Acids Research, 2014, 42, 8389-8404.	14.5	21
36	Functional cross talk between the Fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery. Human Molecular Genetics, 2020, 29, 1083-1095.	2.9	21

#	Article	IF	CITATIONS
37	<i>SLFN11</i> promotes stalled fork degradation that underlies the phenotype in Fanconi anemia cells. Blood, 2021, 137, 336-348.	1.4	17
38	Divalent cations (Mg2+, Ca2+) differentially influence the beta1 integrin-mediated migration of human fibroblasts and keratinocytes to different extracellular matrix proteins. Experimental Dermatology, 1995, 4, 130-137.	2.9	16
39	The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Research, 2006, 34, 5069-5080.	14.5	16
40	Mcm10 Self-Association Is Mediated by an N-Terminal Coiled-Coil Domain. PLoS ONE, 2013, 8, e70518.	2.5	16
41	The anti-parasitic agent suramin and several of its analogues are inhibitors of the DNA binding protein Mcm10. Open Biology, 2019, 9, 190117.	3.6	15
42	Replication origins: why do we need so many?. Cell Cycle, 2003, 2, 307-9.	2.6	15
43	Damage-specific modification of PCNA. Cell Cycle, 2010, 9, 3698-3703.	2.6	12
44	elF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor Cells. Cancer Research, 2015, 75, 687-697.	0.9	12
45	Mcm10: The glue at replication forks. Cell Cycle, 2016, 15, 3024-3025.	2.6	12
46	Replication Initiation Point Mapping: Approach and Implications. Methods in Molecular Biology, 2009, 521, 105-120.	0.9	4
47	Termination at sTop2. Molecular Cell, 2010, 39, 487-489.	9.7	3
48	Mapping ubiquitination sites of S. cerevisiae Mcm10. Biochemistry and Biophysics Reports, 2016, 8, 212-218.	1.3	3
49	Scarce but scary. Nature Genetics, 2007, 39, 707-708.	21.4	2
50	HDM2 ERKs PCNA. Journal of Cell Biology, 2010, 190, 487-489.	5.2	2
51	Crystal Structure of Entamoeba histolytica Cdc45 Suggests a Conformational Switch that May Regulate DNA Replication. IScience, 2018, 3, 102-109.	4.1	2
52	Encircled: Large-Scale Purification of Replication Origins from Mammalian Chromosomes. Molecular Cell, 2006, 21, 735-736.	9.7	0
53	Penetrating enemy territory: Soluble PCNA-peptides stress out MYCN-overexpressing neuroblastomas. EBioMedicine, 2015, 2, 1844-1845.	6.1	0
54	Not just for coding: a new role for histone tails in replication enzyme activation. FEBS Journal, 2016, 283, 4244-4246.	4.7	0

#	Article	IF	CITATIONS
55	12621 Targeted Chemical-Genetic Screen Platform for Identifying Drug Modes-of-Action. Journal of Clinical and Translational Science, 2021, 5, 101-102.	0.6	0
56	Multiple roles for Mcm10 during lagging strand synthesis. FASEB Journal, 2008, 22, 111.2.	0.5	0
57	Analyzing Origin Activation Patterns by Copy Number Change Experiments. Methods in Molecular Biology, 2009, 521, 279-294.	0.9	0
58	Defects in DNA Ligase I Trigger PCNA Ubiquitination at Lysine 107. FASEB Journal, 2010, 24, 492.5.	0.5	0