
Damien D Pearse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nature Medicine, 2004, 10, 610-616.	30.7	684
2	Combining Schwann Cell Bridges and Olfactory-Ensheathing Glia Grafts with Chondroitinase Promotes Locomotor Recovery after Complete Transection of the Spinal Cord. Journal of Neuroscience, 2005, 25, 1169-1178.	3.6	435
3	Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia, 2007, 55, 976-1000.	4.9	269
4	Specific pathophysiological functions of JNK isoforms in the brain. European Journal of Neuroscience, 2005, 21, 363-377.	2.6	203
5	Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 2950-2963.	3.4	197
6	Combination of Engineered Schwann Cell Grafts to Secrete Neurotrophin and Chondroitinase Promotes Axonal Regeneration and Locomotion after Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 1838-1855.	3.6	139
7	Critical dataâ€based reâ€evaluation of minocycline as a putative specific microglia inhibitor. Clia, 2016, 64, 1788-1794.	4.9	137
8	Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Journal of Neuroinflammation, 2016, 13, 9.	7.2	134
9	Modulation of the cAMP signaling pathway after traumatic brain injury. Experimental Neurology, 2007, 208, 145-158.	4.1	127
10	Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Experimental Neurology, 2007, 207, 203-217.	4.1	114
11	Transgenic inhibition of astroglial NFâ€̂PB leads to increased axonal sparing and sprouting following spinal cord injury. Journal of Neurochemistry, 2009, 110, 765-778.	3.9	106
12	Transplantation strategies to promote repair of the injured spinal cord. Journal of Rehabilitation Research and Development, 2003, 40, 55.	1.6	103
13	The role of the serotonergic system in locomotor recovery after spinal cord injury. Frontiers in Neural Circuits, 2014, 8, 151.	2.8	96
14	Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Reviews in the Neurosciences, 2015, 26, 121-8.	2.9	95
15	Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Experimental Neurology, 2009, 216, 471-480.	4.1	93
16	Up-regulation of glomerular COX-2 by angiotensin II: Role of reactive oxygen species. Kidney International, 2005, 68, 2143-2153.	5.2	77
17	Proinflammatory cytokine regulation of cyclic AMPâ€phosphodiesterase 4 signaling in microglia <i>in vitro</i> and following CNS injury. Glia, 2012, 60, 1839-1859.	4.9	74
18	Permissive Schwann Cell Graft/Spinal Cord Interfaces for Axon Regeneration. Cell Transplantation, 2015, 24, 115-131.	2.5	73

#	Article	IF	CITATIONS
19	Basic Fibroblast Growth Factor Promotes Neuronal Survival but Not Behavioral Recovery in the Transected and Schwann Cell Implanted Rat Thoracic Spinal Cord. Journal of Neurotrauma, 2004, 21, 1415-1430.	3.4	72
20	Social and Environmental Enrichment Improves Sensory and Motor Recovery after Severe Contusive Spinal Cord Injury in the Rat. Journal of Neurotrauma, 2007, 24, 1761-1772.	3.4	70
21	Neuronal Populations Capable of Regeneration following a Combined Treatment in Rats with Spinal Cord Transection. Journal of Neurotrauma, 2007, 24, 1667-1673.	3.4	69
22	Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord. Journal of Neurotrauma, 2010, 27, 789-801.	3.4	67
23	Muscle Injection of AAV-NT3 Promotes Anatomical Reorganization of CST Axons and Improves Behavioral Outcome following SCI. Journal of Neurotrauma, 2009, 26, 941-953.	3.4	64
24	Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. Journal of Neuroinflammation, 2014, 11, 159.	7.2	62
25	The Therapeutic Profile of Rolipram, PDE Target and Mechanism of Action as a Neuroprotectant following Spinal Cord Injury. PLoS ONE, 2012, 7, e43634.	2.5	59
26	Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males. Journal of Neurotrauma, 2015, 32, 1146-1157.	3.4	59
27	PDE4B as a microglia target to reduce neuroinflammation. Clia, 2016, 64, 1698-1709.	4.9	58
28	Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. International Journal of Molecular Sciences, 2017, 18, 696.	4.1	58
29	Advantages of delaying the onset of rehabilitative reaching training in rats with incomplete spinal cord injury. European Journal of Neuroscience, 2009, 29, 641-651.	2.6	55
30	Therapeutic Hypothermia in Spinal Cord Injury: The Status of Its Use and Open Questions. International Journal of Molecular Sciences, 2015, 16, 16848-16879.	4.1	55
31	Intramuscular AAV delivery of NTâ€3 alters synaptic transmission to motoneurons in adult rats. European Journal of Neuroscience, 2010, 32, 997-1005.	2.6	47
32	Effect of Gender on Recovery After Spinal Cord Injury. Translational Stroke Research, 2013, 4, 447-461.	4.2	46
33	Upregulation of cortical COX-2 in salt-sensitive hypertension: role of angiotensin II and reactive oxygen species. American Journal of Physiology - Renal Physiology, 2008, 294, F385-F392.	2.7	45
34	A Selective Phosphodiesterase-4 Inhibitor Reduces Leukocyte Infiltration, Oxidative Processes, and Tissue Damage after Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1035-1049.	3.4	45
35	The Interplay between Cyclic AMP, MAPK, and NF- <i>ΰ</i> B Pathways in Response to Proinflammatory Signals in Microglia. BioMed Research International, 2015, 2015, 1-18.	1.9	45
36	Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 285-299.	3.4	45

#	Article	IF	CITATIONS
37	Human Schwann cells exhibit longâ€ŧerm cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia, 2017, 65, 1278-1301.	4.9	40
38	Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Frontiers in Molecular Neuroscience, 2016, 9, 33.	2.9	39
39	Combining Neurotrophin-Transduced Schwann Cells and Rolipram to Promote Functional Recovery from Subacute Spinal Cord Injury. Cell Transplantation, 2013, 22, 2203-2217.	2.5	35
40	Inhibition of tumour necrosis factor-alpha by antisense targeting produces immunophenotypical and morphological changes in injury-activated microglia and macrophages. European Journal of Neuroscience, 2004, 20, 3387-3396.	2.6	34
41	Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration. BioMed Research International, 2014, 2014, 1-8.	1.9	32
42	Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. International Journal of Molecular Sciences, 2018, 19, 2550.	4.1	32
43	Angiotensin II increases the expression of the transcription factor ETS-1 in mesangial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F1094-F1100.	2.7	30
44	Alterations of action potentials and the localization of Nav1.6 sodium channels in spared axons after hemisection injury of the spinal cord in adult rats. Journal of Neurophysiology, 2011, 105, 1033-1044.	1.8	30
45	MASH1/Ascl1a Leads to GAP43 Expression and Axon Regeneration in the Adult CNS. PLoS ONE, 2015, 10, e0118918.	2.5	29
46	Inhibition of NADPH Oxidase Activation in Oligodendrocytes Reduces Cytotoxicity Following Trauma. PLoS ONE, 2013, 8, e80975.	2.5	25
47	Cellular repair strategies for spinal cord injury. Expert Opinion on Biological Therapy, 2006, 6, 639-652.	3.1	23
48	The combination of human neuronal serotonergic cell implants and environmental enrichment after contusive SCI improves motor recovery over each individual strategy. Behavioural Brain Research, 2008, 194, 236-241.	2.2	23
49	Acute Molecular Perturbation of Inducible Nitric Oxide Synthase with an Antisense Approach Enhances Neuronal Preservation and Functional Recovery after Contusive Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 2244-2249.	3.4	22
50	Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neuroscience Letters, 2015, 602, 126-132.	2.1	21
51	The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells. BioMed Research International, 2015, 2015, 1-10.	1.9	20
52	Jun, Fos and Krox in the hippocampus after noxious stimulation: simultaneous-input-dependent expression and nuclear speckling. Brain Research, 2001, 894, 193-208.	2.2	19
53	Does being female provide a neuroprotective advantage following spinal cord injury?. Neural Regeneration Research, 2015, 10, 1533.	3.0	19
54	Dose and Chemical Modification Considerations for Continuous Cyclic AMP Analog Delivery to the Injured CNS. Journal of Neurotrauma, 2009, 26, 733-740.	3.4	17

#	Article	IF	CITATIONS
55	Methylprednisolone and other confounders to spinal cord injury clinical trials. Nature Clinical Practice Neurology, 2006, 2, 402-403.	2.5	16
56	Enzymatic Engineering of Polysialic Acid on Cells in Vitro and in Vivo Using a Purified Bacterial Polysialyltransferase. Journal of Biological Chemistry, 2012, 287, 32770-32779.	3.4	16
57	Scalable culture techniques to generate large numbers of purified human Schwann cells for clinical trials in human spinal cord and peripheral nerve injuries. Journal of Neurosurgery: Spine, 2022, 36, 135-144.	1.7	14
58	Abating progressive tissue injury and preserving function after CNS trauma: The role of inflammation modulatory therapies. Current Opinion in Investigational Drugs, 2010, 11, 1207-10.	2.3	13
59	Use of the CatWalk Gait Device to Assess Differences in Locomotion between Genders in Rats Inherently and following Spinal Cord Injury. Dataset Papers in Science, 2016, 2016, 1-11.	1.0	12
60	The assessment of adenoâ€associated vectors as potential intrinsic treatments for brainstem axon regeneration. Journal of Gene Medicine, 2012, 14, 20-34.	2.8	10
61	Loss of Central Inhibition: Implications for Behavioral Hypersensitivity after Contusive Spinal Cord Injury in Rats. Pain Research and Treatment, 2014, 2014, 1-11.	1.7	10
62	Response to the report, "A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats―by Sharp et al. (this volume). Experimental Neurology, 2012, 233, 645-648.	4.1	9
63	Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plasticity, 2015, 2015, 1-11.	2.2	8
64	Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. International Journal of Molecular Sciences, 2017, 18, 245.	4.1	8
65	Targeting Intracellular Signaling Molecules Within the Neuron to Promote Repair After Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2004, 10, 1-16.	1.8	7
66	Cyclic AMP-specific PDEs: A promising therapeutic target for CNS repair. Translational Neuroscience, 2010, 1, .	1.4	6
67	Imaging characteristics of chronic spinal cord injury identified during screening for a cell transplantation clinical trial. Neurosurgical Focus, 2019, 46, E8.	2.3	6
68	Analysis of Epineurial Lidocaine Injection for Nerve Transfers in a Rat Sciatic Nerve Model. Journal of Hand Surgery, 2019, 44, 1027-1036.	1.6	5
69	Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience, 2021, 461, 140-154.	2.3	5
70	Paralysis research: Promoting nerve fiber protection, growth and functional recovery by cyclic AMP and cell transplantation. Discovery Medicine, 2004, 4, 199-202.	0.5	3
71	Comparative Profiling of TG2 and Its Effectors in Human Relapsing Remitting and Progressive Multiple Sclerosis. Biomedicines, 2022, 10, 1241.	3.2	3
72	182 Acute Putrescine Supplementation With Schwann Cell Transplantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injury. Neurosurgery, 2015, 62, 226-227	1.1	2

#	Article	IF	CITATIONS
73	Engineering polysialic acid on Schwann cells using polysialyltransferase gene transfer or purified enzyme exposure for spinal cord injury transplantation. Neuroscience Letters, 2021, 748, 135690.	2.1	2
74	The Use of Antisense-Mediated Inhibition to Delineate The Role of Inflammatory Agents in The Pathophysiology of Spinal Cord Injury. Scientific World Journal, The, 2002, 2, 133-135.	2.1	0
75	Chronic thoracic hemisection spinal cord injury in adult rats induces a progressive decline in transmission from uninjured fibers to lumbar motoneurons. Nature Precedings, 2008, , .	0.1	Ο
76	Comparison of Amniotic Membrane and Collagen Nerve Wraps around Sciatic Nerve Reverse Autografts in a Rat Sciatic Nerve Model. Journal of the American College of Surgeons, 2019, 229, e176-e177.	0.5	0
77	Neuronal and endothelial transglutaminase-2 expression in experimental autoimmune encephalomyelitis and multiple sclerosis. Neural Regeneration Research, 2022, 17, 1471.	3.0	0