Irek I Mukhamatdinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803474/publications.pdf

Version: 2024-02-01

40 papers

655 citations

18 h-index 25 g-index

42 all docs

42 docs citations

times ranked

42

129 citing authors

#	Article	IF	CITATIONS
1	Composition of aquathermolysis catalysts forming in situ from oil-soluble catalyst precursor mixtures. Journal of Petroleum Science and Engineering, 2018, 169, 44-50.	2.1	45
2	In-Situ Heavy Oil Aquathermolysis in the Presence of Nanodispersed Catalysts Based on Transition Metals. Processes, 2021, 9, 127.	1.3	45
3	Aquathermolysis of heavy oil in reservoir conditions with the use of oil-soluble catalysts: part III – changes in composition resins and asphaltenes. Petroleum Science and Technology, 2018, 36, 1857-1863.	0.7	35
4	Effects of calcite and dolomite on conversion of heavy oil under subcritical condition. Petroleum Science and Technology, 2019, 37, 687-693.	0.7	35
5	Catalytic Aquathermolysis of Boca de Jaruco Heavy Oil with Nickel-Based Oil-Soluble Catalyst. Processes, 2020, 8, 532.	1.3	35
6	Extra-Heavy Oil Aquathermolysis Using Nickel-Based Catalyst: Some Aspects of In-Situ Transformation of Catalyst Precursor. Catalysts, 2021, 11, 189.	1.6	35
7	Influence of Co-based catalyst on subfractional composition of heavy oil asphaltenes during aquathermolysis. Journal of Petroleum Science and Engineering, 2020, 186, 106721.	2.1	33
8	The Composition and Structure of Ultra-Dispersed Mixed Oxide (II, III) Particles and Their Influence on In-Situ Conversion of Heavy Oil. Catalysts, 2020, 10, 114.	1.6	32
9	Aquathermolysis of heavy oil in reservoir conditions with the use of oil-soluble catalysts: part I \hat{a} e changes in composition of saturated hydrocarbons. Petroleum Science and Technology, 2018, 36, 1829-1836.	0.7	31
10	Aquathermolysis of heavy oil in reservoir conditions with the use of oil-soluble catalysts: part II – changes in composition of aromatic hydrocarbons. Petroleum Science and Technology, 2018, 36, 1850-1856.	0.7	30
11	Application of Aromatic and Industrial Solvents for Enhancing Heavy Oil Recovery from the Ashalcha Field. Energy & Enhancing Heavy Oil Recovery from the Ashalcha Field. Energy & Enhancing Heavy Oil Recovery from the Ashalcha Field.	2.5	25
12	The composition of aromatic destruction products of Domanic shale kerogen after aquathermolysis. Petroleum Science and Technology, 2019, 37, 390-395.	0.7	24
13	Aquathermolysis of High-Viscosity Oil in the Presence of an Oil-Soluble Iron-Based Catalyst. Chemistry and Technology of Fuels and Oils, 2017, 53, 666-674.	0.2	22
14	Heavy oil aquathermolysis in the presence of rock-forming minerals and iron oxide (II, III) nanoparticles. Petroleum Science and Technology, 2020, 38, 574-579.	0.7	22
15	Iron oxide nanoparticles impact on improving reservoir rock minerals catalytic effect on heavy oil aquathermolysis. Fuel, 2022, 327, 124956.	3.4	22
16	Intraformation Transformation of Heavy Oil by Mixed Fe(II, III) Oxides. Chemistry and Technology of Fuels and Oils, 2018, 54, 574-580.	0.2	21
17	Comparative Kinetic Study on Heavy Oil Oxidation in the Presence of Nickel Tallate and Cobalt Tallate. Energy & Fuels, 2019, 33, 9107-9113.	2.5	19
18	Thermal Behavior of Heavy Oil Catalytic Pyrolysis and Aquathermolysis. Catalysts, 2022, 12, 449.	1.6	19

#	Article	IF	CITATIONS
19	Changes in the subfractional composition of heavy oil asphaltenes under aquathermolysis with oil-soluble CO-based catalyst. Petroleum Science and Technology, 2019, 37, 1589-1595.	0.7	17
20	Changes in Heavy Oil Saturates and Aromatics in the Presence of Microwave Radiation and Iron-Based Nanoparticles. Catalysts, 2022, 12, 514.	1.6	15
21	Transformation of Resinous Components of the Ashalcha Field Oil during Catalytic Aquathermolysis in the Presence of a Cobalt-Containing Catalyst Precursor. Catalysts, 2021, 11, 745.	1.6	13
22	Study of Fractional Composition of Asphaltenes in Hydrocarbon Material. Chemistry and Technology of Fuels and Oils, 2018, 54, 44-50.	0.2	12
23	Influence of nanosized iron oxides (II, III) on conversion of biodegradated oil. Petroleum Science and Technology, 2019, 37, 971-976.	0.7	12
24	Development of a catalyst based on mixed iron oxides for intensification the production of heavy hydrocarbon feedstocks. Fuel, 2022, 312, 123005.	3.4	12
25	The aquathermolysis of heavy oil from Riphean-Vendian complex with iron-based catalyst: FT-IR spectroscopy data. Petroleum Science and Technology, 2019, 37, 1410-1416.	0.7	11
26	Underground Upgrading of the Heavy Crude Oil in Content-Saturated Sandstone with Aquathermolysis in the Presence of an Iron Based Catalyst. Catalysts, 2021, 11, 1255.	1.6	7
27	Influence of Naphthenic Hydrocarbons and Polar Solvents on the Composition and Structure of Heavy-Oil Aquathermolysis Products. Industrial & Engineering Chemistry Research, 2021, 60, 13191-13203.	1.8	6
28	The catalytic effects of carbonate minerals on characteristics of heavy oil in hydrothermal reactions. Petroleum Science and Technology, 2018, 36, 1439-1445.	0.7	5
29	Investigation of Structural Phase Conversions of an Iron-Containing Catalyst by Mossbauer Spectroscopy (Part 1). Journal of Applied Spectroscopy, 2020, 87, 680-684.	0.3	3
30	Investigation of Structural-Phase Conversion of an Iron-Containing Catalyst by Mössbauer Spectroscopy (Part 2). Journal of Applied Spectroscopy, 2021, 88, 92-96.	0.3	3
31	A Study of the Rheological Properties of Road Asphalts Modified by an Adhesive Additive. Chemistry and Technology of Fuels and Oils, 2017, 53, 683-691.	0.2	2
32	Study of the oxidized and non- oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance. IOP Conference Series: Earth and Environmental Science, 2018, 155, 012004.	0.2	2
33	A new approach for measuring rheology of polymer solutions in reservoir conditions. Journal of Petroleum Science and Engineering, 2019, 181, 106160.	2.1	2
34	Modifying Complex Additive for Asphalt Binder. Chemistry and Technology of Fuels and Oils, 2016, 52, 588-592.	0.2	1
35	MATERIAL COMPOSITION OF COASTAL MARINE PLACER DEPOSITS OF THE ARABIAN SEA COAST (KOLLAM,) TJ E	TQq1 1 0.	784314 rg8⊤
36	RHEOLOGY AND WETTABILITY CONTROL OF POLYMER SOLUTIONS BASED ON POLYACRYLAMIDE IN ENHANCED OIL RECOVERY., 2017,,.		1

#	Article	IF	CITATIONS
37	MATERIAL COMPOSITION OF THE UPPER JURASSIC HORIZON OF TEVLINSKO-RUSSKINSKY FIELD (WEST) Tj ETQq	1 1 0.7843	14 rgBT /Ov
38	INVESTIGATION OF PHYSICAL AND MECHANICAL PROPERTIES OF ASPHALT MIXTURES MODIFIED BY ADHESIVE ADDITIVE. , $2018, , .$		0
39	Influence of Adhesive Additives on the Aging of Oxidized Road Bitumen. Chemistry for Sustainable Development, 2021, 29, 683-690.	0.0	0
40	Aquathermolysis of high-viscosity oil terrigenic sediments in the presence of iron oxide (II, III)., 2021, 3, 75-81.		0