
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034700/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell, 2010, 142, 409-419.	13.5	1,919
3	Unravelling mechanisms of p53-mediated tumour suppression. Nature Reviews Cancer, 2014, 14, 359-370.	12.8	1,090
4	The role of apoptosis in cancer development and treatment response. Nature Reviews Cancer, 2005, 5, 231-237.	12.8	816
5	In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature, 1990, 344, 126-132.	13.7	628
6	Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes and Development, 2000, 14, 3037-3050.	2.7	546
7	A subset of p53-deficient embryos exhibit exencephaly. Nature Genetics, 1995, 10, 175-180.	9.4	544
8	Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression. Cell, 2011, 145, 571-583.	13.5	443
9	p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Reports, 2018, 22, 569-575.	2.9	389
10	Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes and Development, 2013, 27, 1016-1031.	2.7	353
11	Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nature Medicine, 2014, 20, 769-777.	15.2	349
12	Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1163-1171.	15.2	349
13	Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genetics, 2008, 40, 963-970.	9.4	334
14	p53 at a glance. Journal of Cell Science, 2010, 123, 2527-2532.	1.2	311
15	Perp Is a p63-Regulated Gene Essential for Epithelial Integrity. Cell, 2005, 120, 843-856.	13.5	289
16	An inducible long noncoding RNA amplifies DNA damage signaling. Nature Genetics, 2016, 48, 1370-1376.	9.4	195
17	<i>Neat1</i> is a p53-inducible lincRNA essential for transformation suppression. Genes and Development, 2017, 31, 1095-1108.	2.7	179
18	Deciphering p53 signaling in tumor suppression. Current Opinion in Cell Biology, 2018, 51, 65-72.	2.6	170

#	Article	IF	CITATIONS
19	Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death and Differentiation, 2018, 25, 93-103.	5.0	167
20	Deconstructing p53 transcriptional networks in tumor suppression. Trends in Cell Biology, 2012, 22, 97-106.	3.6	162
21	Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochemical and Biophysical Research Communications, 2005, 331, 881-890.	1.0	157
22	p53 and Tumor Suppression: It Takes a Network. Trends in Cell Biology, 2021, 31, 298-310.	3.6	156
23	Desmosomes: new perpetrators in tumour suppression. Nature Reviews Cancer, 2011, 11, 317-323.	12.8	151
24	A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell, 2017, 32, 460-473.e6.	7.7	142
25	The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nature Genetics, 2005, 37, 145-152.	9.4	130
26	Developmental Context Determines Latency of MYC-Induced Tumorigenesis. PLoS Biology, 2004, 2, e332.	2.6	126
27	Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature, 2018, 554, 112-117.	13.7	125
28	Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature, 2014, 514, 228-232.	13.7	117
29	Increased Sensitivity to UV Radiation in Mice with a p53 Point Mutation at Ser389. Molecular and Cellular Biology, 2004, 24, 8884-8894.	1.1	116
30	The Transactivation Domains of the p53 Protein. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026047.	2.9	105
31	The Metastasis-Associated Gene Prl-3 Is a p53 Target Involved in Cell-Cycle Regulation. Molecular Cell, 2008, 30, 303-314.	4.5	104
32	p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell, 2021, 184, 689-708.e20.	13.5	104
33	Perp Is a Mediator of p53-Dependent Apoptosis in Diverse Cell Types. Current Biology, 2003, 13, 1985-1990.	1.8	97
34	Activation of the p53-dependent G1 checkpoint response in mouse embryo fibroblasts depends on the specific DNA damage inducer. Oncogene, 2004, 23, 973-980.	2.6	97
35	Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nature Communications, 2019, 10, 4045.	5.8	88
36	Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Research, 2015, 43, 4447-4462.	6.5	84

#	Article	IF	CITATIONS
37	Specifications of the ACMG/AMP variant interpretation guidelines for germline <i>TP53</i> variants. Human Mutation, 2021, 42, 223-236.	1.1	81
38	Probing p53 biological functions through the use of genetically engineered mouse models. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 576, 4-21.	0.4	78
39	Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17123-17128.	3.3	76
40	Genome-Wide Analysis of p53 under Hypoxic Conditions. Molecular and Cellular Biology, 2006, 26, 3492-3504.	1.1	75
41	In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis, 2010, 31, 1311-1318.	1.3	67
42	Loss of the p53/p63 Regulated Desmosomal Protein Perp Promotes Tumorigenesis. PLoS Genetics, 2010, 6, e1001168.	1.5	63
43	The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 569, 145-157.	0.4	60
44	Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discovery, 2021, 11, 660-677.	7.7	58
45	Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes and Development, 2017, 31, 463-480.	2.7	54
46	Analysis of p53 Transactivation Domain Mutants Reveals Acad11 as a Metabolic Target Important for p53 Pro-Survival Function. Cell Reports, 2015, 10, 1096-1109.	2.9	53
47	Illuminating p53 function in cancer with genetically engineered mouse models. Seminars in Cell and Developmental Biology, 2014, 27, 74-85.	2.3	52
48	The role of p53 in developmental syndromes. Journal of Molecular Cell Biology, 2019, 11, 200-211.	1.5	51
49	The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes. Developmental Cell, 2019, 50, 212-228.e6.	3.1	48
50	The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nature Communications, 2021, 12, 4308.	5.8	45
51	Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Molecular Cell, 2020, 80, 452-469.e9.	4.5	44
52	Perp-etrating p53-Dependent Apoptosis. Cell Cycle, 2004, 3, 265-267.	1.3	42
53	p63, Cell Adhesion and Survival. Cell Cycle, 2007, 6, 255-261.	1.3	42
54	The p53 family members have distinct roles during mammalian embryonic development. Cell Death and Differentiation, 2017, 24, 575-579.	5.0	41

#	Article	IF	CITATIONS
55	Dominant-Negative but not Gain-of-Function Effects of a p53.R270H Mutation in Mouse Epithelium Tissue after DNA Damage. Cancer Research, 2007, 67, 4648-4656.	0.4	40
56	A New Perp in the Lineup: Linking p63 and Desmosomal Adhesion. Cell Cycle, 2005, 4, 873-876.	1.3	37
57	PERP regulates enamel formation via effects on cell–cell adhesion and gene expression. Journal of Cell Science, 2011, 124, 745-754.	1.2	36
58	Multiple response elements and differential p53 binding control Perp expression during apoptosis. Molecular Cancer Research, 2003, 1, 1048-57.	1.5	36
59	Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1215-1220.	3.3	34
60	Mice Lacking the p53/p63 Target Gene Perp Are Resistant to Papilloma Development. Cancer Research, 2005, 65, 6551-6556.	0.4	27
61	The Requirement for Perp in Postnatal Viability and Epithelial Integrity Reflects an Intrinsic Role in Stratified Epithelia. Journal of Investigative Dermatology, 2006, 126, 69-73.	0.3	27
62	Differential PERP regulation by TP63 mutants provides insight into AEC pathogenesis. American Journal of Medical Genetics, Part A, 2009, 149A, 1952-1957.	0.7	26
63	A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies. Developmental Cell, 2021, 56, 2089-2102.e11.	3.1	26
64	p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. Journal of Cell Biology, 2020, 219, .	2.3	26
65	A Healthy Tan?. New England Journal of Medicine, 2007, 356, 2208-2210.	13.9	24
66	The p53 Target Gene <i>SIVA</i> Enables Non–Small Cell Lung Cancer Development. Cancer Discovery, 2015, 5, 622-635.	7.7	24
67	Deficiency of the p53/p63 target Perp alters mammary gland homeostasis and promotes cancer. Breast Cancer Research, 2012, 14, R65.	2.2	23
68	Conquering the complexity of p53. Nature Genetics, 2004, 36, 7-8.	9.4	22
69	Tumor Suppression: p53 Alters Immune Surveillance to Restrain LiverÂCancer. Current Biology, 2013, 23, R527-R530.	1.8	22
70	The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Molecular Cell, 2022, 82, 2370-2384.e10.	4.5	22
71	SKP-ing TAp63: Stem Cell Depletion, Senescence, and Premature Aging. Cell Stem Cell, 2009, 5, 1-2.	5.2	21
72	TRP53 activates a global autophagy program to promote tumor suppression. Autophagy, 2013, 9, 1440-1442.	4.3	21

#	Article	IF	CITATIONS
73	p73 and FoxJ1: Programming Multiciliated Epithelia. Trends in Cell Biology, 2016, 26, 239-240.	3.6	19
74	Guilty as CHARGED: p53's expanding role in disease. Cell Cycle, 2014, 13, 3798-3807.	1.3	18
75	SIDT2 RNA Transporter Promotes Lung and Gastrointestinal Tumor Development. IScience, 2019, 20, 14-24.	1.9	17
76	Mutations in PERP Cause Dominant and Recessive Keratoderma. Journal of Investigative Dermatology, 2019, 139, 380-390.	0.3	17
77	Loss of the Desmosomal Protein Perp Enhances the Phenotypic Effects of Pemphigus Vulgaris Autoantibodies. Journal of Investigative Dermatology, 2009, 129, 1710-1718.	0.3	16
78	Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Frontiers in Genetics, 2018, 9, 473.	1.1	16
79	A piece of the p53 puzzle. Nature, 2015, 520, 37-38.	13.7	15
80	p53QS: An Old Mutant Teaches Us New Tricks. Cell Cycle, 2005, 4, 731-734.	1.3	14
81	RB goes mitochondrial. Genes and Development, 2013, 27, 975-979.	2.7	14
82	Loss of the p53/p63 target PERP is an early event in oral carcinogenesis and correlates with higher rate of local relapse. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115, 95-103.	0.2	14
83	Unimpaired Skin Carcinogenesis in Desmoglein 3 Knockout Mice. PLoS ONE, 2012, 7, e50024.	1.1	13
84	A Balancing Act: p53 Activity from Tumor Suppression to Pathology and Therapeutic Implications. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 205-226.	9.6	13
85	Engaging the p53 metabolic brake drives senescence. Cell Research, 2013, 23, 739-740.	5.7	11
86	Neat-en-ing up our understanding of p53 pathways in tumor suppression. Cell Cycle, 2018, 17, 1527-1535.	1.3	9
87	Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death and Differentiation, 2021, 28, 2083-2094.	5.0	5
88	An anterograde pathway for sensory axon degeneration gated by a cytoplasmic action of the transcriptional regulator P53. Developmental Cell, 2021, 56, 976-984.e3.	3.1	5
89	Siva plays a critical role in mouse embryonic development. Cell Death and Differentiation, 2020, 27, 297-309.	5.0	4
90	Pilot study of loss of the p53/p63 target gene PERP at the surgical margin as a potential predictor of local relapse in head and neck squamous cell carcinoma. Head and Neck, 2020, 42, 3188-3196.	0.9	4

#	Article	IF	CITATIONS
91	Reply to Explaining the biological activity of transactivation-deficient p53 variants. Nature Genetics, 2006, 38, 396-397.	9.4	3
92	P53 orchestrates a complex symphony of cellular processes during oncosuppression. Molecular and Cellular Oncology, 2021, 8, 1852066.	0.3	3
93	Zmat3 splices together p53-dependent tumor suppression. Molecular and Cellular Oncology, 2021, 8, 1898523.	0.3	2
94	The p53 Transactivation Domain 1-Dependent Response to Acute DNA Damage in Endothelial Cells Protects against Radiation-Induced Cardiac Injury. Radiation Research, 2022, 198, .	0.7	0