Yu Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034628/publications.pdf

Version: 2024-02-01

713013 686830 46 532 13 21 citations h-index g-index papers 48 48 48 905 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Unusual suppression of tungsten 5d electron depletion in superhard tungsten tetraboride solid solution with chromium under compression. Journal of Physics Condensed Matter, 2022, 34, 035401.	0.7	1
2	Pressure-induced phase transitions, amorphization and alloying in Sb ₂ S ₃ . Physical Chemistry Chemical Physics, 2022, 24, 10053-10061.	1.3	6
3	Quantum phase transition from superconducting to insulating-like state in a pressurized cuprate superconductor. Nature Physics, 2022, 18, 406-410.	6.5	18
4	Synthesis of Two-Dimensional CsPb ₂ X ₅ (X = Br and I) with a Stable Structure and Tunable Bandgap by CsPbX ₃ Phase Separation. Journal of Physical Chemistry Letters, 2022, 13, 2555-2562.	2.1	14
5	Local insight to the structural phase transition sequence of Bi ₂ Se ₃ under quasi-hydrostatic and nonhydrostatic pressure. Journal of Physics Condensed Matter, 2021, 33, 215402.	0.7	3
6	Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science (Wuhan, China), 2021, 32, 880-886.	1.1	2
7	Anomalous enhancement of atomic vibration induced by electronic transition in 2H-MoTe2 under compression. Journal of Physics Condensed Matter, 2021, 34, .	0.7	1
8	Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	13
9	Probing temperature effects on lattice distortion and oxidation resistance of high-entropy alloys by in situ SR-XRD and XANES. Journal of Materials Research, 2021, 36, 4413-4425.	1.2	4
10	Prediction of topological nontrivial semimetals and pressure-induced Lifshitz transition in 1T′-MoS ₂ layered bulk polytypes. Nanoscale, 2020, 12, 22710-22717.	2.8	8
11	Pressure-induced superconductivity and structural transition in ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CrSiTe</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B. 2020, 102, .	1.1	39
12	Anomalous lattice stiffening in tungsten tetraboride solid solutions with manganese under compression. Journal of Physics Condensed Matter, 2020, 32, 165702.	0.7	2
13	Structural changes in hexagonal WO3 under high pressure. Journal of Alloys and Compounds, 2019, 797, 1013-1017.	2.8	8
14	Equation of state of LiCoO ₂ under 30 GPa pressure. Chinese Physics B, 2019, 28, 016402.	0.7	6
15	Phase transitions in bismuth under rapid compression. Chinese Physics B, 2019, 28, 036201.	0.7	2
16	Pressure-induced phase transitions and structural evolution across the insulator–metal transition in bulk and nanoscale BiFeO ₃ . Journal of Physics Condensed Matter, 2019, 31, 265404.	0.7	4
17	Local insight into the La-induced structural phase transition in multiferroic BiFeO (sub) 3 (sub) ceramics by x-ray absorption fine structure spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 085402.	0.7	7
18	Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials. Electrochimica Acta, 2018, 263, 409-416.	2.6	21

#	Article	IF	CITATIONS
19	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	2.1	5
20	In Situ Time-Resolved X-ray Absorption Fine Structure and Small Angle X-ray Scattering Revealed an Unexpected Phase Structure Transformation during the Growth of Nickel Phosphide Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 16397-16405.	1.5	6
21	Nanostructural hereditability in polyacrylonitrile based fibers studied by small angle X-ray scattering. Polymer, 2018, 153, 485-497.	1.8	17
22	Local structural changes during the disordered substitutional alloy transition in Bi2Te3 by high-pressure XAFS. Journal of Applied Physics, 2018, 124, 065901.	1.1	7
23	Comparative investigation of the vibrational properties of bulk 2 <i>H</i> –MoS ₂ and its exfoliated nanosheets under high pressure. Journal of Raman Spectroscopy, 2017, 48, 596-600.	1.2	10
24	Tertiary structure of cactus-like WO 3 spheres self-assembled on Cu foil for supercapacitive electrode materials. Journal of Alloys and Compounds, 2017, 712, 345-354.	2.8	21
25	Biâ€centric view of the isostructural phase transitions in αâ€Bi ₂ Se ₃ and αâ€Bi ₂ Te ₃ . Physica Status Solidi (B): Basic Research, 2017, 254, 1700007.	0.7	11
26	Hydrothermal preparation of MoS 2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta, 2017, 227, 101-109.	2.6	15
27	V ₂ O ₅ nanobelt arrays with controllable morphologies for enhanced performance supercapacitors. CrystEngComm, 2017, 19, 6412-6424.	1.3	23
28	Revisiting local structural changes in GeO ₂ glass at high pressure. Journal of Physics Condensed Matter, 2017, 29, 465401.	0.7	8
29	Biâ€centric view of the isostructural phase transitions in αâ€Bi ₂ Se ₃ and αâ€Bi ₂ Te ₃ (Phys. Status Solidi B 7/2017). Physica Status Solidi (B): Basic Research, 2017, 254, 1770238.	0.7	0
30	LaB\${}_{6}\$ Work Function and Structural Stability under High Pressure. Chinese Physics Letters, 2017, 34, 076201.	1.3	2
31	Temperature-driven directional coalescence of silver nanoparticles. Journal of Synchrotron Radiation, 2016, 23, 718-728.	1.0	4
32	Toward a Unified Identification of Ti Location in the MFI Framework of High-Ti-Loaded TS-1: Combined EXAFS, XANES, and DFT Study. Journal of Physical Chemistry C, 2016, 120, 20114-20124.	1.5	45
33	Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	4
34	Mythen detector for X-ray diffraction at the Beijing synchrotron radiation facility. Instrumentation Science and Technology, 2016, 44, 1-11.	0.9	12
35	Noncrystalline structure of Ni–P nanoparticles prepared by liquid pulse discharge. Journal of Synchrotron Radiation, 2015, 22, 376-384.	1.0	5
36	Anharmonicity and local lattice distortion in strained Ge-dilute Silâ^'Ge alloy. Journal of Alloys and Compounds, 2015, 653, 117-121.	2.8	2

#	Article	IF	CITATIONS
37	Crystallization mechanism analysis of noncrystalline Niâ \in P nanoparticles through XRD, HRTEM and XAFS. CrystEngComm, 2014, 16, 9657-9668.	1.3	33
38	In-situ microstructural changes of polyacrylonitrile based fibers with stretching deformation. Polymer, 2014, 55, 4270-4280.	1.8	26
39	Optimal synthesis and magnetic properties of size-controlled nickel phosphide nanoparticles. Journal of Alloys and Compounds, 2014, 605, 230-236.	2.8	13
40	Time-Resolved Small-Angle X-ray Scattering Study on the Growth Behavior of Silver Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 11454-11463.	1.5	29
41	Microstructural change of degummed Bombyx mori silk: An in situ stretching wide-angle X-ray-scattering study. International Journal of Biological Macromolecules, 2013, 57, 99-104.	3.6	16
42	Synthesis and structural characterization of ZnO doped with Co. Journal of Alloys and Compounds, 2013, 558, 212-221.	2.8	43
43	Structural Change of Human Hair Induced by Mercury Exposure. Environmental Science & Emp; Technology, 2013, 47, 11214-11220.	4.6	10
44	Shape evolution with temperature of a thermotolerant protein (<i>PeaT</i> 1) in solution detected by small angle Xâ€ray scattering. Proteins: Structure, Function and Bioinformatics, 2013, 81, 53-62.	1.5	3
45	Hierarchical structure and biomineralization in cricket teeth. Chinese Physics C, 2013, 37, 028001.	1.5	1
46	GISAXS and SAXS studies on the spatial structures of Co nanowire arrays. Chinese Physics C, 2011, 35, 875-879.	1.5	2