
## Nikolas Pontikos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034486/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Research, 2012, 40, D71-D75.                                                                                       | 6.5  | 1,196     |
| 2  | The Human Phenotype Ontology in 2017. Nucleic Acids Research, 2017, 45, D865-D876.                                                                                                                           | 6.5  | 699       |
| 3  | Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Research, 2011, 39, D214-D219.                                                                                              | 6.5  | 649       |
| 4  | 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England<br>Journal of Medicine, 2021, 385, 1868-1880.                                                               | 13.9 | 352       |
| 5  | Functional variants in the <i>LRRK2</i> gene confer shared effects on risk for Crohn's disease and<br>Parkinson's disease. Science Translational Medicine, 2018, 10, .                                       | 5.8  | 273       |
| 6  | Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping<br>Consortium. Scientific Reports, 2016, 6, 20686.                                                                  | 1.6  | 240       |
| 7  | Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. The Lancet Digital Health, 2019, 1, e232-e242.                  | 5.9  | 183       |
| 8  | Genetic Basis of Inherited Retinal Disease in a Molecularly Characterized Cohort of More Than 3000<br>Families from the United Kingdom. Ophthalmology, 2020, 127, 1384-1394.                                 | 2.5  | 131       |
| 9  | Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human<br>Genetics, 2016, 99, 1305-1315.                                                                               | 2.6  | 121       |
| 10 | Code-free deep learning for multi-modality medical image classification. Nature Machine Intelligence, 2021, 3, 288-298.                                                                                      | 8.3  | 90        |
| 11 | The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from<br>a Large Family of Closely Related Individuals. MBio, 2017, 8, .                                         | 1.8  | 82        |
| 12 | The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nature<br>Communications, 2020, 11, 1044.                                                                        | 5.8  | 81        |
| 13 | Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene<br>Contact in Dominant Retinitis Pigmentosa. American Journal of Human Genetics, 2020, 107, 802-814.         | 2.6  | 75        |
| 14 | Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused<br>by Non-coding Mutations in the Promoter of OVOL2. American Journal of Human Genetics, 2016, 98,<br>75-89. | 2.6  | 70        |
| 15 | Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population.<br>PLoS Genetics, 2018, 14, e1007329.                                                                | 1.5  | 66        |
| 16 | The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Progress in Retinal and Eye Research, 2021, 82, 100898.                                  | 7.3  | 65        |
| 17 | Predicting sex from retinal fundus photographs using automated deep learning. Scientific Reports, 2021, 11, 10286.                                                                                           | 1.6  | 65        |
| 18 | Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without<br>Additional Developmental Anomalies, American Journal of Human Genetics, 2017, 100, 592-604                        | 2.6  | 61        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to<br>Fine Mapping. PLoS Genetics, 2015, 11, e1005272.                                                                                                 | 1.5 | 55        |
| 20 | Genetic Complexity of Crohn's Disease in Two Large Ashkenazi Jewish Families. Gastroenterology, 2016,<br>151, 698-709.                                                                                                                                   | 0.6 | 54        |
| 21 | A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and<br>Reduces Monocyte Signaling via GM-CSF. Gastroenterology, 2016, 151, 710-723.e2.                                                                        | 0.6 | 51        |
| 22 | Mutations in CPAMD8 Cause a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis.<br>American Journal of Human Genetics, 2016, 99, 1338-1352.                                                                                                  | 2.6 | 47        |
| 23 | Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes<br>Posterior Polymorphous Corneal Dystrophy 4. American Journal of Human Genetics, 2018, 102, 447-459.                                                    | 2.6 | 45        |
| 24 | Genetic Variants Associated With Corneal Biomechanical Properties and Potentially Conferring<br>Susceptibility to Keratoconus in a Genome-Wide Association Study. JAMA Ophthalmology, 2019, 137,<br>1005.                                                | 1.4 | 45        |
| 25 | Deep Phenotyping of <i>PDE6C</i> -Associated Achromatopsia. , 2019, 60, 5112.                                                                                                                                                                            |     | 44        |
| 26 | Clinically relevant deep learning for detection and quantification of geographic atrophy from optical<br>coherence tomography: a model development and external validation study. The Lancet Digital Health,<br>2021, 3, e665-e675.                      | 5.9 | 44        |
| 27 | Association of Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation With Early-Onset<br>Retinal Dystrophy. JAMA Ophthalmology, 2017, 135, 339.                                                                                               | 1.4 | 43        |
| 28 | An Improved Phenotype-Driven Tool for Rare Mendelian Variant Prioritization: Benchmarking Exomiser<br>on Real Patient Whole-Exome Data. Genes, 2020, 11, 460.                                                                                            | 1.0 | 42        |
| 29 | Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data.<br>Bioinformatics, 2017, 33, 2421-2423.                                                                                                                      | 1.8 | 40        |
| 30 | GUCY2D-Associated Leber Congenital Amaurosis: A Retrospective Natural History Study in Preparation for Trials of Novel Therapies. American Journal of Ophthalmology, 2020, 210, 59-70.                                                                   | 1.7 | 39        |
| 31 | The GA4GH Phenopacket schema defines a computable representation of clinical data. Nature<br>Biotechnology, 2022, 40, 817-820.                                                                                                                           | 9.4 | 38        |
| 32 | Genome instability is a consequence of transcription deficiency in patients with bone marrow failure harboring biallelic <i>ERCC6L2</i> variants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7777-7782. | 3.3 | 37        |
| 33 | A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.                                                                                | 2.0 | 36        |
| 34 | Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine. BMC Medical Genomics, 2018, 11, 108.                                                                                             | 0.7 | 34        |
| 35 | Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.                                                                                                                         | 1.7 | 33        |
| 36 | Prediction of Causative Genes in Inherited Retinal Disorders from Spectral-Domain Optical Coherence<br>Tomography Utilizing Deep Learning Techniques. Journal of Ophthalmology, 2019, 2019, 1-7.                                                         | 0.6 | 32        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Juvenile Batten Disease (CLN3): Detailed Ocular Phenotype, Novel Observations, Delayed Diagnosis,<br>Masquerades, and Prospects for Therapy. Ophthalmology Retina, 2020, 4, 433-445.                                                                                                          | 1.2 | 31        |
| 38 | Autosomal Recessive Bestrophinopathy. Ophthalmology, 2021, 128, 706-718.                                                                                                                                                                                                                      | 2.5 | 31        |
| 39 | Moorfields AMD database report 2: fellow eye involvement with neovascular age-related macular<br>degeneration. British Journal of Ophthalmology, 2020, 104, 684-690.                                                                                                                          | 2.1 | 26        |
| 40 | Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Communications Biology, 2021, 4, 274.                                                                                                                               | 2.0 | 26        |
| 41 | Recessive Retinopathy Consequent on Mutant G-Protein β Subunit 3 ( <i>GNB3</i> ). JAMA Ophthalmology, 2016, 134, 924.                                                                                                                                                                         | 1.4 | 25        |
| 42 | One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: a retrospective cohort study and an open science resource. BMJ Open, 2019, 9, e027441.                                                                                                       | 0.8 | 25        |
| 43 | Loss-of-Function Mutations in the CFH Gene Affecting Alternatively Encoded Factor H-like 1 Protein<br>Cause Dominant Early-Onset Macular Drusen. Ophthalmology, 2019, 126, 1410-1421.                                                                                                         | 2.5 | 25        |
| 44 | The genetic landscape of crystallins in congenital cataract. Orphanet Journal of Rare Diseases, 2020,<br>15, 333.                                                                                                                                                                             | 1.2 | 25        |
| 45 | Clinical and Genetic Characteristics of 18 Patients from 13 Japanese Families with CRX-associated retinal disorder: Identification of Genotype-phenotype Association. Scientific Reports, 2020, 10, 9531.                                                                                     | 1.6 | 24        |
| 46 | Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus.<br>Scientific Reports, 2017, 7, 7512.                                                                                                                                                        | 1.6 | 23        |
| 47 | Missense variants in the X-linked gene <i>PRPS1</i> cause retinal degeneration in females. Human Mutation, 2018, 39, 80-91.                                                                                                                                                                   | 1.1 | 23        |
| 48 | AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157<br>patients in London, UK. BMJ Open, 2022, 12, e058552.                                                                                                                                    | 0.8 | 22        |
| 49 | Clinical and genetic characteristics of 10 Japanese patients with PROM1 â€associated retinal disorder: A report of the phenotype spectrum and a literature review in the Japanese population. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 656-674. | 0.7 | 21        |
| 50 | Genetic Spectrum of EYS-associated Retinal Disease in a Large Japanese Cohort: Identification of<br>Disease-associated Variants with Relatively High Allele Frequency. Scientific Reports, 2020, 10, 5497.                                                                                    | 1.6 | 21        |
| 51 | Clinical and Molecular Characterization of Familial Exudative Vitreoretinopathy Associated With Microcephaly. American Journal of Ophthalmology, 2019, 207, 87-98.                                                                                                                            | 1.7 | 20        |
| 52 | Unique noncoding variants upstream of <i>PRDM13</i> are associated with a spectrum of developmental retinal dystrophies including progressive bifocal chorioretinal atrophy. Human Mutation, 2019, 40, 578-587.                                                                               | 1.1 | 19        |
| 53 | A novel missense mutation in HSF4 causes autosomal-dominant congenital lamellar cataract in a<br>British family. Eye, 2018, 32, 806-812.                                                                                                                                                      | 1.1 | 18        |
| 54 | Phenotypical Characteristics of <i>POC1B</i> -Associated Retinopathy in Japanese Cohort: Cone<br>Dystrophy With Normal Funduscopic Appearance. , 2019, 60, 3432.                                                                                                                              |     | 18        |

| #  | Article                                                                                                                                                                                                        | IF         | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 55 | KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course—KCNV2 Study Group<br>Report 1. American Journal of Ophthalmology, 2021, 225, 95-107.                                            | 1.7        | 17             |
| 56 | Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical<br>Practice Settings. JAMA Ophthalmology, 2022, 140, 153.                                                           | 1.4        | 17             |
| 57 | Homozygous OB-fold variants in telomere protein TPP1 are associated with dyskeratosis<br>congenita–like phenotypes. Blood, 2018, 132, 1349-1353.                                                               | 0.6        | 16             |
| 58 | Myelodysplasia and liver disease extend the spectrum of RTEL1 related telomeropathies.<br>Haematologica, 2017, 102, e293-e296.                                                                                 | 1.7        | 15             |
| 59 | Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with<br><i>GUCY2D</i> -Associated Retinal Disorder. Translational Vision Science and Technology, 2020, 9, 2.            | 1.1        | 15             |
| 60 | A recurrent splice-site mutation in <i>EPHA2</i> causing congenital posterior nuclear cataract.<br>Ophthalmic Genetics, 2018, 39, 236-241.                                                                     | 0.5        | 13             |
| 61 | Pathogenic <i>NR2F1</i> variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Communications, 2021, 3, fcab162.                                                         | 1.5        | 13             |
| 62 | A hybrid qPCR/SNP array approach allows cost efficient assessment of KIR gene copy numbers in large samples. BMC Genomics, 2014, 15, 274.                                                                      | 1.2        | 12             |
| 63 | Panelâ€based genetic testing for inherited retinal disease screening 176 genes. Molecular Genetics &<br>Genomic Medicine, 2021, 9, e1663.                                                                      | 0.6        | 12             |
| 64 | Prediction of causative genes in inherited retinal disorder from fundus photography and<br>autofluorescence imaging using deep learning techniques. British Journal of Ophthalmology, 2021,<br>105, 1272-1279. | 2.1        | 12             |
| 65 | Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Medical<br>Informatics, 2021, 9, e27363.                                                                                | 1.3        | 12             |
| 66 | ReLayer: a Free, Online Tool for Extracting Retinal Thickness From Cross-Platform OCT Images.<br>Translational Vision Science and Technology, 2019, 8, 25.                                                     | 1.1        | 11             |
| 67 | KCNV2-Associated Retinopathy: Detailed Retinal Phenotype and Structural Endpoints—KCNV2 Study<br>Group Report 2. American Journal of Ophthalmology, 2021, 230, 1-11.                                           | 1.7        | 11             |
| 68 | Spatial Functional Characteristics of East Asian Patients With Occult Macular Dystrophy (Miyake) Tj ETQq0 0 0                                                                                                  | rgBT_/Over | rlock 10 Tf 50 |
| 69 | Pheno4J: a gene to phenotype graph database. Bioinformatics, 2017, 33, 3317-3319.                                                                                                                              | 1.8        | 9              |
| 70 | Frequency and distribution of corneal astigmatism and keratometry features in adult life:<br>Methodology and findings of the UK Biobank study. PLoS ONE, 2019, 14, e0218144.                                   | 1.1        | 9              |
| 71 | Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals.<br>Translational Vision Science and Technology, 2020, 9, 8.                                                    | 1.1        | 9              |
| 72 | Rare coding variant analysis in a large cohort of Ashkenazi Jewish families with inflammatory bowel<br>disease. Human Genetics, 2018, 137, 723-734.                                                            | 1.8        | 8              |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3<br>molecular diagnosis. Experimental Eye Research, 2019, 182, 160-166.                                                                                       | 1.2 | 8         |
| 74 | Comment on: Trends in Retina Specialist Imaging Utilization From 2012 to 2016 in the United States<br>Medicare Fee-for-Service Population. American Journal of Ophthalmology, 2020, 211, 229.                                                                 | 1.7 | 8         |
| 75 | A novel missense mutation in <i>LIM2</i> causing isolated autosomal dominant congenital cataract.<br>Ophthalmic Genetics, 2020, 41, 131-134.                                                                                                                  | 0.5 | 8         |
| 76 | Associations of Alcohol Consumption and Smoking With Disease Risk and Neurodegeneration in<br>Individuals With Multiple Sclerosis in the United Kingdom. JAMA Network Open, 2022, 5, e220902.                                                                 | 2.8 | 8         |
| 77 | Electrical responses from human retinal cone pathways associate with a common genetic<br>polymorphism implicated in myopia. Proceedings of the National Academy of Sciences of the United<br>States of America, 2022, 119, .                                  | 3.3 | 8         |
| 78 | Extending the phenotypic spectrum of PRPF8, PRPH2, RP1 and RPGR, and the genotypic spectrum of early-onset severe retinal dystrophy. Orphanet Journal of Rare Diseases, 2021, 16, 128.                                                                        | 1.2 | 7         |
| 79 | Personalized Model to Predict Keratoconus Progression From Demographic, Topographic, and Genetic<br>Data. American Journal of Ophthalmology, 2022, 240, 321-329.                                                                                              | 1.7 | 7         |
| 80 | Whole-genome sequencing reveals a recurrent missense mutation in the Connexin 46 (GJA3) gene causing autosomal-dominant lamellar cataract. Eye, 2018, 32, 1661-1668.                                                                                          | 1.1 | 6         |
| 81 | Phenogenon: Gene to phenotype associations for rare genetic diseases. PLoS ONE, 2020, 15, e0230587.                                                                                                                                                           | 1.1 | 6         |
| 82 | Novel homozygous splicing mutations in cause autosomal recessive retinitis pigmentosa. Molecular<br>Vision, 2018, 24, 603-612.                                                                                                                                | 1.1 | 6         |
| 83 | Elevation in Cell Cycle and Protein Metabolism Gene Transcription in Inactive Colonic Tissue From<br>Icelandic Patients With Ulcerative Colitis. Inflammatory Bowel Diseases, 2019, 25, 317-327.                                                              | 0.9 | 5         |
| 84 | RP2 â€associated retinal disorder in a Japanese cohort: Report of novel variants and a literature review,<br>identifying a genotype–phenotype association. American Journal of Medical Genetics, Part C: Seminars<br>in Medical Genetics, 2020, 184, 675-693. | 0.7 | 5         |
| 85 | Familial Limbal Stem Cell Deficiency: Clinical, Cytological and Genetic Characterization. Stem Cell<br>Reviews and Reports, 2018, 14, 148-151.                                                                                                                | 5.6 | 4         |
| 86 | CUGC for posterior polymorphous corneal dystrophy (PPCD). European Journal of Human Genetics, 2020, 28, 126-131.                                                                                                                                              | 1.4 | 4         |
| 87 | Whole Exome Sequencing Reveals Novel and Recurrent Disease-Causing Variants in Lens Specific Gap<br>Junctional Protein Encoding Genes Causing Congenital Cataract. Genes, 2020, 11, 512.                                                                      | 1.0 | 4         |
| 88 | Pathogenic variants in the <i>CYP21A2</i> gene cause isolated autosomal dominant congenital posterior polar cataracts. Ophthalmic Genetics, 2022, 43, 218-223.                                                                                                | 0.5 | 4         |
| 89 | A recurrent variant in <i>LIM2</i> causes an isolated congenital sutural/lamellar cataract in a<br>Japanese family. Ophthalmic Genetics, 2022, 43, 622-626.                                                                                                   | O.5 | 4         |
| 90 | Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function<br>ZEB1 Alleles. Genes, 2021, 12, 677.                                                                                                                          | 1.0 | 3         |

| #   | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy. Acta Ophthalmologica, 2022, 100, .                                                                                                                           | 0.6 | 3         |
| 92  | Genome-wide linkage and haplotype sharing analysis implicates the MCDR3 locus as a candidate region<br>for a developmental macular disorder in association with digit abnormalities. Ophthalmic Genetics,<br>2017, 38, 511-519.                                                           | 0.5 | 2         |
| 93  | ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci. Bioinformatics, 2020, 36, 1517-1521.                                                                                                                                   | 1.8 | 2         |
| 94  | Exploring the potential for acute anterior uveitis (AAU) patients to self-manage recurrences via a<br>mobile application: qualitative analysis of a Moorfields Patient Experience focus group. Eye, 2020, 35,<br>2895-2896.                                                               | 1.1 | 2         |
| 95  | A frameshift variant in specificity protein 1 triggers superactivation of Sp1-mediated transcription in familial bone marrow failure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17151-17155.                                            | 3.3 | 2         |
| 96  | Variants in PAX6, PITX3 and HSF4 causing autosomal dominant congenital cataracts. Eye, 2022, 36, 1694-1701.                                                                                                                                                                               | 1.1 | 2         |
| 97  | Fractionated Stereotactic Radiation Therapy for Pituitary Adenomas: An alternative escalating<br>protocol of hypofractionated stereotactic radiotherapy delivering 35 Gy in 5 fractions. Cancer<br>Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2021, , . | 0.6 | 2         |
| 98  | Collaborative Research and Development of a Novel, Patient-Centered Digital Platform (MyEyeSite) for<br>Rare Inherited Retinal Disease Data: Acceptability and Feasibility Study. JMIR Formative Research, 2022, 6,<br>e21341.                                                            | 0.7 | 2         |
| 99  | Genome Analysis for Inherited Retinal Disease: The State of the Art. Essentials in Ophthalmology, 2021, , 153-168.                                                                                                                                                                        | 0.0 | 1         |
| 100 | Cloud-based genomics pipelines for ophthalmology: reviewed from research to clinical practice.<br>Modeling and Artificial Intelligence in Ophthalmology, 2021, 3, 101-140.                                                                                                                | 0.1 | 1         |
| 101 | Stargardt Macular Dystrophy. , 2022, , 151-168.                                                                                                                                                                                                                                           |     | 1         |
| 102 | â€ĩlt's a bit of a grey area': challenges faced by stop smoking practitioners when advising on e-cigarettes.<br>Journal of Smoking Cessation, 2020, 15, 44-49.                                                                                                                            | 0.3 | 0         |
| 103 | Seqfam: A python package for analysis of Next Generation Sequencing DNA data in families.<br>F1000Research, 0, 7, 281.                                                                                                                                                                    | 0.8 | 0         |
| 104 | Integrating exome and whole genome analysis with the Human Phenotype Ontology for discovery of new genes in rare eye diseases. Acta Ophthalmologica, 2019, 97, .                                                                                                                          | 0.6 | 0         |