
## Hideto Tamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034470/publications.pdf Version: 2024-02-01



ΗΙΔΕΤΟ ΤΛΜΠΡΛ

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature<br>Medicine, 2002, 8, 793-800.                                                              | 30.7 | 4,217     |
| 2  | B7-H4, a Molecule of the B7 Family, Negatively Regulates T Cell Immunity. Immunity, 2003, 18, 849-861.                                                                                        | 14.3 | 623       |
| 3  | B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood, 2001, 97, 1809-1816.                                                                              | 1.4  | 201       |
| 4  | Interferon-γ and tumor necrosis factor-α induce an immunoinhibitory molecule, B7-H1, via nuclear<br>factor-κB activation in blasts in myelodysplastic syndromes. Blood, 2010, 116, 1124-1131. | 1.4  | 179       |
| 5  | Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. Journal of<br>Clinical Investigation, 2003, 111, 363-370.                                            | 8.2  | 164       |
| 6  | Expression of Functional B7-H2 and B7.2 Costimulatory Molecules and Their Prognostic Implications in De novo Acute Myeloid Leukemia. Clinical Cancer Research, 2005, 11, 5708-5717.           | 7.0  | 111       |
| 7  | Myeloma Drug Resistance Induced by Binding of Myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunology<br>Research, 2016, 4, 779-788.                                                                 | 3.4  | 80        |
| 8  | Immunopathogenesis and immunotherapy of multiple myeloma. International Journal of Hematology, 2018, 107, 278-285.                                                                            | 1.6  | 53        |
| 9  | Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget, 2017, 8, 88904-88917.                                         | 1.8  | 52        |
| 10 | PD-L1–PD-1 Pathway in the Pathophysiology of Multiple Myeloma. Cancers, 2020, 12, 924.                                                                                                        | 3.7  | 41        |
| 11 | Immunology of B7-H1 and Its Roles in Human Diseases. International Journal of Hematology, 2003, 78, 321-328.                                                                                  | 1.6  | 34        |
| 12 | Histone deacetylase inhibitor panobinostat induces calcineurin degradation in multiple myeloma. JCI<br>Insight, 2016, 1, e85061.                                                              | 5.0  | 32        |
| 13 | Functional B7.2 and B7-H2 Molecules on Myeloma Cells Are Associated with a Growth Advantage.<br>Clinical Cancer Research, 2009, 15, 770-777.                                                  | 7.0  | 28        |
| 14 | Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget, 2018, 9, 34784-34793.                                                                                                | 1.8  | 27        |
| 15 | Prognostic significance of WT1 mRNA and anti-WT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leukemia Research, 2010, 34, 986-990.                        | 0.8  | 24        |
| 16 | Immunotherapy for Multiple Myeloma. Cancers, 2019, 11, 2009.                                                                                                                                  | 3.7  | 20        |
| 17 | Disease progression mechanism in myelodysplastic syndromes: Insight into the role of the microenvironment. Leukemia Research, 2011, 35, 1449-1452.                                            | 0.8  | 19        |
| 18 | Increased apoptosis of circulating T cells in myelodysplastic syndromes. Leukemia Research, 2007, 31, 1641-1648.                                                                              | 0.8  | 16        |

HIDETO TAMURA

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Differences in blast immunophenotypes among disease types in myelodysplastic syndromes: A<br>multicenter validation study. Leukemia Research, 2012, 36, 1229-1236.                                                                                                                            | 0.8 | 16        |
| 20 | Plasma soluble interleukin-2 receptor level in patients with primary myelodysplastic syndromes: a relationship with disease subtype and clinical outcome. British Journal of Haematology, 1996, 93, 45-52.                                                                                    | 2.5 | 12        |
| 21 | SLAMF3-Mediated Signaling via ERK Pathway Activation Promotes Aggressive Phenotypic Behaviors in<br>Multiple Myeloma. Molecular Cancer Research, 2020, 18, 632-643.                                                                                                                           | 3.4 | 12        |
| 22 | Incidence and clinical background of hepatitis B virus reactivation in multiple myeloma in novel<br>agents' era. Annals of Hematology, 2016, 95, 1465-1472.                                                                                                                                   | 1.8 | 11        |
| 23 | Prognostic significance of Wilms tumor 1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Cancer Biomarkers, 2016, 17, 21-32.                                                                                                           | 1.7 | 10        |
| 24 | Cytomegalovirus reactivation in low-grade B-cell lymphoma patients treated with bendamustine.<br>Leukemia and Lymphoma, 2016, 57, 2204-2207.                                                                                                                                                  | 1.3 | 9         |
| 25 | Circulating cell-free DNA in the peripheral blood plasma of patients is an informative biomarker for multiple myeloma relapse. International Journal of Clinical Oncology, 2021, 26, 2142-2150.                                                                                               | 2.2 | 9         |
| 26 | CD155 and CD112 as possible therapeutic targets of <i>FLT3</i> inhibitors for acute myeloid leukemia.<br>Oncology Letters, 2021, 23, 51.                                                                                                                                                      | 1.8 | 9         |
| 27 | Pure White Cell Aplasia: Report of the First Case Associated with Primary Biliary Cirrhosis.<br>International Journal of Hematology, 2007, 85, 97-100.                                                                                                                                        | 1.6 | 8         |
| 28 | Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple<br>Myeloma. Cancers, 2021, 13, 279.                                                                                                                                                                | 3.7 | 8         |
| 29 | Hypofibrinogenemia induced by prednisolone therapy in a patient with chronic lymphocytic leukemia complicated with autoimmune hemolytic anemia. , 1997, 55, 166-167.                                                                                                                          |     | 6         |
| 30 | Elotuzumab-induced interstitial lung disease: the first case report. Japanese Journal of Clinical<br>Oncology, 2018, 48, 491-494.                                                                                                                                                             | 1.3 | 6         |
| 31 | A combination of check-point blockade and α-galactosylceramide elicits long-lasting suppressive effects on murine hepatoma cell growth in vivo. Immunobiology, 2020, 225, 151860.                                                                                                             | 1.9 | 5         |
| 32 | The SLAMF3 rs509749 polymorphism correlates with malignant potential in multiple myeloma.<br>Experimental Hematology, 2020, 90, 72-79.                                                                                                                                                        | 0.4 | 5         |
| 33 | Leukocytoclastic vasculitis with eosinophilic infiltration associated with thalidomide therapy for multiple myeloma: A case report. Allergology International, 2017, 66, 497-498.                                                                                                             | 3.3 | 4         |
| 34 | Expression and Function of B7.2 and B7-H2 Molecules on Myeloma Cells. Blood, 2008, 112, 2722-2722.                                                                                                                                                                                            | 1.4 | 4         |
| 35 | Retrospective analysis of prognostic factors for WaldenstrÓ§m macroglobulinemia: a multicenter cooperative study in Japan. International Journal of Hematology, 2017, 106, 681-690.                                                                                                           | 1.6 | 3         |
| 36 | CD7 Expression On Blasts Of Myelodysplastic Syndromes Is Associated With Apoptosis Resistance With<br>Decreased Expression Of The Proapoptotic Protein Bad and An Independent Unfavorable Prognostic<br>Factor Together With The Revised IPSS Score In Patients. Blood, 2013, 122, 2799-2799. | 1.4 | 3         |

HIDETO TAMURA

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Repeated Cycles of G SF ombined Postremission Chemotherapy for Acute Myeloid Leukemia in a First<br>Complete Remission: A Pilot Study. Stem Cells, 1998, 16, 280-287.                                                           | 3.2 | 2         |
| 38 | Flow Cytometry-Based Photodynamic Diagnosis with 5-Aminolevulinic Acid for the Detection of<br>Minimal Residual Disease in Multiple Myeloma. Tohoku Journal of Experimental Medicine, 2019, 249,<br>19-28.                      | 1.2 | 2         |
| 39 | Prospective Analysis of Cytomegalovirus Reactivation and the Immune State of Low-Grade B-Cell<br>Lymphoma Patients Treated with Bendamustine. Blood, 2014, 124, 4411-4411.                                                      | 1.4 | 2         |
| 40 | Durvalumab Combined with Immunomodulatory Drugs (IMiD) Overcomes Suppression of Antitumor<br>Responses due to IMiD-induced PD-L1 Upregulation on Myeloma Cells. Molecular Cancer Therapeutics,<br>2021, 20, 1283-1294.          | 4.1 | 1         |
| 41 | Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. , 0, .                                                                                                                               |     | 1         |
| 42 | Upregulation of PD-L1 on Myeloma Cells By Immunomodulatory Agents Potentiates the Effect of Durvalumab. Blood, 2018, 132, 4439-4439.                                                                                            | 1.4 | 1         |
| 43 | Expression and Function of B7 Family Molecules on Blasts of Patients with Myelodysplastic<br>Syndromes. Journal of Nippon Medical School, 2007, 74, 85-86.                                                                      | 0.9 | 1         |
| 44 | Diagnostic Utility of Flow Cytometry in Myelodysplastic Syndromes: A Prospective Validation Study in<br>Low-Risk Patients with Normal Karyotype. Blood, 2008, 112, 3634-3634.                                                   | 1.4 | 1         |
| 45 | FAILURE TO DETECT ANTI-HTLV-1 ANTIBODY IN A PATIENT WITH ADULT T-CELL LEUKAEMIA/LYMPHOMA. British<br>Journal of Haematology, 1998, 103, 1207-1208.                                                                              | 2.5 | 1         |
| 46 | Serum Soluble CD86, Still a Prognostic Factor in the Novel Agent Era in Multiple Myeloma Patients, Is<br>Produced By Myeloma Cells with High CD86 Variant 3 Expression. Blood, 2019, 134, 4361-4361.                            | 1.4 | 1         |
| 47 | Clinicopathologic characteristics and <i>A20</i> mutation in primary thyroid lymphoma. Journal of<br>Nippon Medical School, 2021, , .                                                                                           | 0.9 | 1         |
| 48 | Chronic Active Epstein-Barr Virus Infection Complicated with Acute Myeloid Leukemia, Squamous Cell<br>Carcinoma and Diffuse Panbronchiolitis. The Journal of the Japanese Society of Internal Medicine,<br>2008, 97, 1081-1082. | 0.0 | 0         |
| 49 | Expression and Function of B7 Family Molecules in Hematologic Malignancies. Journal of Nippon<br>Medical School, 2010, 77, 45-47.                                                                                               | 0.9 | 0         |
| 50 | Identification and Hematopoietic Potential of CD45-Negative Clonal Cells with Very Immature<br>Phenotype (CD45â^'CD34â^'CD38â^'Linâ^') in Patients with Myelodysplastic Syndromes Blood, 2004, 104,<br>3426-3426.               | 1.4 | 0         |
| 51 | Flow Cytometric Characteristics of CD34+ Cells in Refractory Anemia: Their Diagnostic Value Blood, 2005, 106, 4896-4896.                                                                                                        | 1.4 | 0         |
| 52 | B7.2 and B7-H2 Molecules Stimulate Proliferation of Myeloma Cells and Inhibit Anti-Myeloma Immune<br>Responses Blood, 2007, 110, 3524-3524.                                                                                     | 1.4 | 0         |
| 53 | Expression of Functional B7-H1 Molecules on Blasts from Myelodysplastic Syndromes Blood, 2007, 110, 2429-2429.                                                                                                                  | 1.4 | 0         |
| 54 | Expression of WT-1 mRNA in Peripheral Blood from Myelodysplastic Syndromes. Blood, 2008, 112, 3637-3637.                                                                                                                        | 1.4 | 0         |

HIDETO TAMURA

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interferon-γ and Tumor Necrosis Factor-α Induce An Immunoinhibitory Molecule, B7-H1, Via NfκB<br>Activation in Blasts of Myelodysplastic Syndromes Blood, 2009, 114, 2766-2766.                                                                                       | 1.4 | 0         |
| 56 | Prognostic Significance of WT1 mRNA and Anti-WT1 Antibody Levels in Peripheral Blood in Patients with Myelodysplastic Syndromes Blood, 2009, 114, 3821-3821.                                                                                                          | 1.4 | 0         |
| 57 | Clinical Features of AL Amyloidosis Diagnosed via Renal Biopsy, and Response to Treatment. Journal of<br>Nippon Medical School, 2010, 77, 348-351.                                                                                                                    | 0.9 | 0         |
| 58 | B7-H1 Molecules on Myeloma Cells Induce Aggressive Cell Behavior. Blood, 2011, 118, 474-474.                                                                                                                                                                          | 1.4 | 0         |
| 59 | YM155, a Survivin Suppressant, Induces Cell Death Via Suppression Of c-Myc Expression In Multiple<br>Myeloma Cells. Blood, 2013, 122, 1667-1667.                                                                                                                      | 1.4 | 0         |
| 60 | Clinicopathological Characteristics and A20 (TNFAIP3) Mutation In Primary Thyroid Lymphoma. Blood, 2013, 122, 4320-4320.                                                                                                                                              | 1.4 | 0         |
| 61 | Interaction Between B7-H1 Molecules on Myeloma Cells and PD-1 Molecules on T Cells Induces Resistance to Antimyeloma Chemotherapy. Blood, 2014, 124, 2018-2018.                                                                                                       | 1.4 | 0         |
| 62 | Clinical Utility of Slam Family Member CD229 in Identifying Tumor Cells and High-Risk Disease Markers,<br>CD86 (B7-2) and CD126 (IL-6 receptor), Using Flow Cytometric Analysis in Multiple Myeloma. Blood, 2014,<br>124, 2063-2063.                                  | 1.4 | 0         |
| 63 | Retrospective Analysis of Prognostic Factors for Waldenström Macroglobulinemia: A Multicenter<br>Cooperative Study in Japan. Blood, 2015, 126, 5028-5028.                                                                                                             | 1.4 | 0         |
| 64 | Clinical Significance and Pathopysiological Function of the Tim-3/Galection-9 Pathway in<br>Myelodysplastic Syndromes. Blood, 2015, 126, 4117-4117.                                                                                                                   | 1.4 | 0         |
| 65 | A New Prognostic Index for Waldenström Macroglobulinemia Based on a Multicenter Retrospective<br>Study of the Japanese Society of Myeloma. Blood, 2018, 132, 5320-5320.                                                                                               | 1.4 | 0         |
| 66 | Effect of G-CSF on induction of ENA-78 and IL-8 in the patients with malignant lymphoma. Zhongguo Shi<br>Yan Xue Ye Xue Za Zhi / Zhongguo Bing Li Sheng Li Xue Hui = Journal of Experimental Hematology /<br>Chinese Association of Pathophysiology, 2014, 22, 344-8. | 0.2 | 0         |