Craig P Butts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803437/publications.pdf Version: 2024-02-01

CRAIC P RUTTS

#	Article	IF	CITATIONS
1	Prediction of ¹⁵ N chemical shifts by machine learning. Magnetic Resonance in Chemistry, 2022, 60, 1087-1092.	1.9	8
2	Monitoring off-resonance signals with SHARPER NMR $\hat{a} {\in} ``$ the MR-SHARPER experiment. Analyst, The, 2022, , .	3.5	2
3	A community-powered search of machine learning strategy space to find NMR property prediction models. PLoS ONE, 2021, 16, e0253612.	2.5	9
4	3× Axial vs 3× Equatorial: The Δ <i>G</i> _{GA} Value Is a Robust Computational Measure of Substituent Steric Effects. Journal of the American Chemical Society, 2021, 143, 13573-13578.	13.7	6
5	Conformationally Controlled Linear and Helical Hydrocarbons Bearing Extended Side Chains. Journal of the American Chemical Society, 2021, 143, 16682-16692.	13.7	7
6	Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. Organic and Biomolecular Chemistry, 2021, 19, 9154-9162.	2.8	6
7	Identification and quantification of myo-inositol hexakisphosphate in complex environmental matrices using ion chromatography and high-resolution mass spectrometry in comparison to 31P NMR spectroscopy. Talanta, 2020, 210, 120188.	5.5	5
8	IMPRESSION – prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy. Chemical Science, 2020, 11, 508-515.	7.4	66
9	Carbonylative C–C Bond Activation of Aminocyclopropanes Using a Temporary Directing Group Strategy. Journal of the American Chemical Society, 2020, 142, 19006-19011.	13.7	22
10	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie, 2020, 132, 22589-22593.	2.0	7
11	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie - International Edition, 2020, 59, 22403-22407.	13.8	32
12	Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nature Chemistry, 2020, 12, 475-480.	13.6	30
13	Accelerated acquisition in pure-shift spectra based on prior knowledge from ¹ H NMR. Chemical Communications, 2019, 55, 9563-9566.	4.1	11
14	Improving the accuracy of ¹ H– ¹⁹ F internuclear distance measurement using 2D ¹ H– ¹⁹ F HOESY. Magnetic Resonance in Chemistry, 2019, 57, 1143-1149.	1.9	10
15	NMReDATA, a standard to report the NMR assignment and parameters of organic compounds. Magnetic Resonance in Chemistry, 2018, 56, 703-715.	1.9	61
16	Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with <i>S</i> -adenosylmethionine. Physical Chemistry Chemical Physics, 2018, 20, 7523-7531.	2.8	22
17	High Resolution for Chemical Shifts and Scalar Coupling Constants: The 2D Realâ€Time Jâ€Upscaled PSYCHEâ€DIAG. ChemPhysChem, 2018, 19, 3166-3170	2.1	4
18	A tendril perversion in a helical oligomer: trapping and characterizing a mobile screw-sense reversal. Chemical Science, 2017, 8, 3007-3018.	7.4	38

#	Article	IF	CITATIONS
19	A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron, 2017, 73, 4955-4962.	1.9	12
20	Genetic and chemical characterisation of the cornexistin pathway provides further insight into maleidride biosynthesis. Chemical Communications, 2017, 53, 7965-7968.	4.1	17
21	Enabling Fast Pseudoâ€2D NMR Spectral Acquisition for Broadband Homonuclear Decoupling: The EXACT NMR Approach. ChemPhysChem, 2017, 18, 2081-2087.	2.1	16
22	Accurate measurement of long range proton–carbon scalar coupling constants. Analyst, The, 2017, 142, 621-633.	3.5	10
23	Perhydrohelicenes and other diamond-lattice based hydrocarbons: the choreography of inversion. Chemical Science, 2017, 8, 6389-6399.	7.4	2
24	The Story behind "Synergy of Synthesis, Computation, and NMR Reveals Correct Baulamycin Structures― Biochemistry, 2017, 56, 6177-6178.	2.5	2
25	Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. International Journal of Nanomedicine, 2017, Volume 12, 1385-1399.	6.7	47
26	Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature, 2017, 547, 436-440.	27.8	104
27	The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals. Beilstein Journal of Organic Chemistry, 2016, 12, 1467-1475.	2.2	7
28	Rapid and safe ASAP acquisition with EXACT NMR. Chemical Communications, 2016, 52, 12769-12772.	4.1	25
29	EXtended ACquisition Time (EXACT) NMR—A Case for ′Burst′ Nonâ€Uniform Sampling. ChemPhysChem, 17, 2799-2803.	2016, 2.1	21
30	Subtle temperature-induced changes in small molecule conformer dynamics – observed and quantified by NOE spectroscopy. Chemical Communications, 2016, 52, 2920-2923.	4.1	18
31	Pure-shift IMPRESS EXSIDE – Easy measurement of ¹ H– ¹³ C scalar coupling constants with increased sensitivity and resolution. RSC Advances, 2015, 5, 107829-107832.	3.6	6
32	Assembly-line synthesis of organic molecules with tailored shapes. Nature, 2014, 513, 183-188.	27.8	252
33	Oxidative dearomatisation: the key step of sorbicillinoid biosynthesis. Chemical Science, 2014, 5, 523-527.	7.4	84
34	One pathway, many compounds: heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity. Chemical Science, 2013, 4, 3845.	7.4	89
35	Stimuli-responsive surfactants. Soft Matter, 2013, 9, 2365.	2.7	258
36	An accessible bicyclic architecture for synthetic lectins. Chemical Communications, 2013, 49, 3110.	4.1	18

#	Article	IF	CITATIONS
37	Dication magnetic ionic liquids with tuneable heteroanions. Chemical Communications, 2013, 49, 2765.	4.1	62
38	New catanionic surfactants with ionic liquid properties. Journal of Colloid and Interface Science, 2013, 395, 185-189.	9.4	65
39	Properties of New Magnetic Surfactants. Langmuir, 2013, 29, 3246-3251.	3.5	75
40	Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of ¹³ C chemical shifts. Beilstein Journal of Organic Chemistry, 2013, 9, 2940-2949.	2.2	30
41	Quantitative NMR-Derived Interproton Distances Combined with Quantum Mechanical Calculations of ¹³ C Chemical Shifts in the Stereochemical Determination of Conicasterol F, a Nuclear Receptor Ligand from <i>Theonella swinhoei</i> . Journal of Organic Chemistry, 2012, 77, 1489-1496.	3.2	81
42	Diastereodivergent Synthesis of Trisubstituted Alkenes through Protodeboronation of Allylic Boronic Esters: Application to the Synthesis of the Californian Red Scale Beetle Pheromone. Angewandte Chemie - International Edition, 2012, 51, 12444-12448.	13.8	67
43	Magnetic emulsions with responsive surfactants. Soft Matter, 2012, 8, 7545.	2.7	56
44	Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions. Biomacromolecules, 2012, 13, 1688-1699.	5.4	154
45	Accurate NOE-distance determination enables the stereochemical assignment of a flexible molecule – arugosin C. Chemical Communications, 2012, 48, 9023.	4.1	33
46	Magnetizing DNA and Proteins Using Responsive Surfactants. Advanced Materials, 2012, 24, 6244-6247.	21.0	68
47	SelEXSIDE: Fast and Easy Measurement of Multiple-Bond ¹ H, ¹³ C Coupling Constants for Stereochemical Analysis. Organic Letters, 2012, 14, 3256-3259.	4.6	21
48	Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application. Langmuir, 2012, 28, 2502-2509.	3.5	189
49	Microemulsions as tunable nanomagnets. Soft Matter, 2012, 8, 11609.	2.7	37
50	Magnetic Control over Liquid Surface Properties with Responsive Surfactants. Angewandte Chemie - International Edition, 2012, 51, 2414-2416.	13.8	181
51	A dialkylborenium ion via reaction of N-heterocyclic carbene–organoboranes with BrÃ,nsted acids—synthesis and DOSY NMR studies. Chemical Communications, 2011, 47, 6650.	4.1	61
52	Nongenetic Reprogramming of a Fungal Highly Reducing Polyketide Synthase. Journal of the American Chemical Society, 2011, 133, 10990-10998.	13.7	50
53	Anionic Surfactants and Surfactant Ionic Liquids with Quaternary Ammonium Counterions. Langmuir, 2011, 27, 4563-4571.	3.5	145
54	High precision NOEs as a probe for low level conformers—a second conformation of strychnine. Chemical Communications, 2011, 47, 1193-1195.	4.1	77

#	Article	IF	CITATIONS
55	Interproton distance determinations by NOE – surprising accuracy and precision in a rigid organic molecule. Organic and Biomolecular Chemistry, 2011, 9, 177-184.	2.8	148
56	Accuracy in determining interproton distances using Nuclear Overhauser Effect data from a flexible molecule. Beilstein Journal of Organic Chemistry, 2011, 7, 145-150.	2.2	76
57	The Interaction of Gold(I) Cations with 1,3â€Dienes. Angewandte Chemie - International Edition, 2011, 50, 7592-7595.	13.8	46
58	[R4N] [AOT]: A Surfactant Ionic Liquid as a Mild Glycosylation Promoter. Journal of Carbohydrate Chemistry, 2011, 30, 486-497.	1.1	17
59	Stereochemical Assignments of the Chlorinated Residues in Victorin C. Synthesis, 2009, 2009, 2009, 2954-2962.	2.3	3
60	Synthesis, Structure and Reactivity of Stable Homoleptic Gold(I) Alkene Cations. Chemistry - A European Journal, 2009, 15, 12196-12200.	3.3	47
61	Structure-Based Rationale for Selectivity in the Asymmetric Allylic Allylic Allylic Allylition of CycloalRenyl Esters Employing the Trost †Standard Ligand' (TSL): Isolation, Analysis and Alkylation of the Monomeric form of the Cationic η ³ -Cyclohexenyl Complex [(η ³ - <i>c</i>)C ₆ H ₉)Pd(TSL)] ⁺ . Journal of the American	13.7	166
62	Chemical Society, 2009, 191, 9945 9957. Further Exploring the "Sting of the Scorpion― Hydride Migration and Subsequent Rearrangement of Norbornadiene to Nortricyclyl on Rhodium(I). Organometallics, 2009, 28, 5222-5232.	2.3	59
63	Enantioselective Syntheses of α-Fmoc-Pbf-[2- ¹³ C]- <scp>l</scp> -arginine and Fmoc-[1,3- ¹³ C ₂]- <scp>l</scp> -proline and Incorporation into the Neurotensin Receptor 1 Ligand, NT _{8â~13} . Journal of Organic Chemistry, 2009, 74, 8980-8987.	3.2	6
64	Reactive 4a-alkyl-4aH-carbazoles by catalytic dearomatisation, and their unusual dimerisation and dealkylation reactions. Chemical Communications, 2009, , 4832.	4.1	66
65	Authentic Heterologous Expression of the Tenellin Iterative Polyketide Synthase Nonribosomal Peptide Synthetase Requires Coexpression with an Enoyl Reductase. ChemBioChem, 2008, 9, 585-594.	2.6	125
66	BINOLâ€3,3′â€Triflone <i>N</i> , <i>N</i> â€Dimethyl Phosphoramidites: Throughâ€Space ¹⁹ F, ³¹ P Spin–Spin Coupling with a Remarkable Dependency on Temperature and Solvent Internal Pressure. Chemistry - A European Journal, 2008, 14, 7808-7812.	3.3	33
67	Anion complexation via C–Hâ∢X interactions using a palladacyclic receptor. Chemical Communications, 2008, , 2429.	4.1	45
68	1,2-Diphosphinobenzene as a synthon for the 1,2,3-triphospha- and 2-arsa-1,3-diphosphaindenyl anions and a stable organo derivative of the P8 unit of Hittorf's phosphorus. Chemical Communications, 2008, , 856.	4.1	32
69	A new manifold for the Morita reaction: diene synthesis from simple aldehydes and acrylates/acrylonitrile mediated by phosphines. Chemical Communications, 2007, , 4128.	4.1	24
70	Five-coordinate Pd(ii) orthometallated triarylphosphite complexes. Dalton Transactions, 2007, , 459-466.	3.3	12
71	Intermolecular Chirality Transfer from Silicon to Carbon:Â Interrogation of the Two-Silicon Cycle for Pd-Catalyzed Hydrosilylation by Stereoisotopochemical Crossover. Journal of the American Chemical Society, 2007, 129, 502-503.	13.7	86
72	Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. Journal of Colloid and Interface Science, 2007, 307, 455-468.	9.4	287

#	Article	IF	CITATIONS
73	BF3·OEt2and TMSOTf: A synergistic combination of Lewis acids. Chemical Communications, 2006, , 4434-4436.	4.1	59
74	Interfacial pH at an Isolated Silicaâ^'Water Surface. Journal of the American Chemical Society, 2005, 127, 1632-1633.	13.7	68
75	The effect of the anion on the physical properties of trihalide-based N,N-dialkylimidazolium ionic liquids. Organic and Biomolecular Chemistry, 2005, 3, 1624.	2.8	75
76	Piperazine additions to C60—a facile approach to fullerene substitution. Organic and Biomolecular Chemistry, 2005, 3, 1209-1216.	2.8	19
77	The Suzuki Coupling of Aryl Chlorides under Microwave Heating. Advanced Synthesis and Catalysis, 2004, 346, 1627-1630.	4.3	35
78	Aggregation Behavior of Aqueous Solutions of Ionic Liquids. Langmuir, 2004, 20, 2191-2198.	3.5	653
79	The Suzuki Coupling of Aryl Chlorides in TBAB—Water Mixtures ChemInform, 2003, 34, no.	0.0	0
80	The Preparation and Structures of Non-Hydrocarbon Functionalized Fullerene—Diamine Adducts ChemInform, 2003, 34, no.	0.0	0
81	The structure and first 1H NMR spectral assignment of piperazine-C60 adducts. Tetrahedron Letters, 2003, 44, 3565-3567.	1.4	8
82	The Suzuki coupling of aryl chlorides in TBAB–water mixtures. Chemical Communications, 2003, , 466-467.	4.1	172
83	The preparation and structures of non-hydrocarbon functionalised fullerene–diamine adducts. Chemical Communications, 2003, , 1530-1531.	4.1	22
84	The azomethine ylide strategy for \hat{l}^2 -lactam synthesis. Azapenams and 1-azacephams. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2014-2021.	1.3	37
85	Preparation of tetraalkylformamidinium salts and related species as precursors to stable carbenes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1586-1593.	1.3	70
86	Bridgehead phosphorus chemistry: in–out inversion, intrabridgehead P  ·â€Â·â€Â·â€Šâ€ŠP bonding, Perkin Transactions II RSC, 2001, , 288-295.	and react	ivity. 20
87	Superbasic bridgehead diphosphines: the effects of strain and intrabridgehead P  · · ·  P b phosphine basicity. Perkin Transactions II RSC, 2001, , 282-287.	onding on	24
88	Diastereoisomeric Cationic π-Allylpalladium-(P,C)-MAP and MOP Complexes and Their Relationship to Stereochemical Memory Effects in Allylic Alkylation. Chemistry - A European Journal, 2000, 6, 4348-4357.	3.3	100
89	Synthesis of the novel amine (R*,R*,R*)-tris(α-methylbenzyl)amine. X-Ray crystal structures of racemic and enantiomerically pure forms. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 4222-4223.	1.3	8
90	Asymmetric reduction of prochiral cycloalkenones. The influence of exocyclic alkene geometry. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3047-3054.	1.3	16

#	Article	IF	CITATIONS
91	Robust and catalytically active mono- and bis-Pd-complexes of the â€~Trost modular ligand'. Chemical Communications, 1999, , 1707-1708.	4.1	66
92	Complexation of stable carbenes with alkali metals. Chemical Communications, 1999, , 241-242.	4.1	197
93	Palladium(II) Complexes of 2-Dimethylamino-2â€~- diphenylphosphino-1,1â€~-binaphthyl (MAP) with Unique P,Cσ-Coordination and Their Catalytic Activity in Allylic Substitution, Hartwigâ°Buchwald Amination, and Suzuki Coupling. Journal of the American Chemical Society, 1999, 121, 7714-7715.	13.7	174
94	Nickel (II) complexes bearing phosphinoaryl oxazoline ligands as pro-catalysts for Grignard cross-coupling. Tetrahedron, 1998, 54, 901-914.	1.9	39
95	Stable Aminooxy- and Aminothiocarbenes. Journal of the American Chemical Society, 1998, 120, 11526-11527.	13.7	105
96	Polymers and oligomers with transverse aromatic groups and tightly controlled chain conformations. Chemical Communications, 1998, , 309-310.	4.1	18
97	Conformational control by quaternary centres: theory, database evidence and application to polymers. Journal of the Chemical Society Perkin Transactions II, 1998, , 2083-2108.	0.9	32
98	Perfect complementarity in the fitting of two homochiral heterodonor ligands around a nickel(II) centre: an â€intramolecular embrace'. Journal of the Chemical Society Dalton Transactions, 1998, , 1421-1422.	1.1	10
99	Photochemical Nitration by Tetranitromethane. Part XLIV. Some Reactions of 2-Phenylpropene and 2,4,6-Trimethylstyrene with Tetranitromethane: Competition between the Radical Chain Addition Reaction and Isoxazolidine Formation: Nitrogen Inversion in Some Isoxazolidines Acta Chemica Scandinavica 1998 52 761-769	0.7	6
100	Photochemical Nitration by Tetranitromethane. Part XXXIX. The Photolysis of Tetranitromethane with 2,8-Dimethyl- and 1,3,7,9-Tetramethyl-dibenzofuran Acta Chemica Scandinavica, 1997, 51, 476-482.	0.7	5
101	Thermal and Photochemical Decomposition Pathways of Trinitromethylarenes. Part II. The Effects of Ethanol on the Photolysis Reactions of Some Alkoxy- and Dialkoxyarenes in the Presence of Tetranitromethane. Enhancement of Adduct and Trinitromethyl Substitution Product Formation Acta Chemica Scandinavica, 1997, 51, 718-732.	0.7	3
102	Regiochemistry of the Reaction between Dibenzothiophene Radical Cation and Nucleophiles or Nitrogen Dioxide Acta Chemica Scandinavica, 1997, 51, 839-848.	0.7	10
103	Photochemical Nitration by Tetranitromethane. Part XL. Regiochemistry of Trinitromethyl Attachment in the Photolysis of Benzofuran with Tetranitromethane Acta Chemica Scandinavica, 1997, 51, 984-999.	0.7	7
104	Photochemical Nitration by Tetranitromethane. Part XLI. Addition Ipso to a Methoxy Group and the Effect of Methanol in the Photochemical Reaction between 1,4-Dimethoxynaphthalene and Tetranitromethane Acta Chemica Scandinavica, 1997, 51, 1066-1077.	0.7	5
105	Photochemical Nitration by Tetranitromethane. Part XXXVII. Adduct Formation and the Regiochemistry of Attack of Trinitromethanide Ion on Radical Cations in the Photochemical Reactions of 2-Methyl-, 2,3-Dimethyl- and 2,4-Dimethylanisoles Acta Chemica Scandinavica, 1997, 51, 73-87.	0.7	1
106	Photochemical nitration by tetranitromethane. Part 36. Adduct formation in the photochemical reactions of 4-fluoroanisole and 4-fluoro-3-methylanisole. Journal of the Chemical Society Perkin Transactions II, 1996, , 1877.	0.9	1
107	Photochemical Nitration by Tetranitromethane. Part XXVI. Adduct Formation in the Photochemical Reaction of 1,2,3-Trimethylbenzene: the Formation of 'Double' Adducts Including Nitronic Esters Acta Chemica Scandinavica, 1996, 50, 29-47.	0.7	7
108	Photochemical Nitration by Tetranitromethane. Part XXX. Product Isolation and Identification in the Photochemical Reaction of Dibenzofuran Acta Chemica Scandinavica, 1996, 50, 587-595.	0.7	6

#	Article	IF	CITATIONS
109	Photochemical Nitration by Tetranitromethane, Part XXXI. The Photochemical Reaction of 1,2,3,4-Tetramethylbenzene and Tetranitromethane Acta Chemica Scandinavica, 1996, 50, 735-744.	0.7	3
110	Photochemical Nitration by Tetranitromethane. Part XXXIII. Adduct Formation in the Photochemical Reactions of 1,2,4,5- and 1,2,3,5-Tetramethylbenzene Acta Chemica Scandinavica, 1996, 50, 991-1008.	0.7	2
111	Photochemical Nitration by Tetranitromethane. Part XXVII. Adduct Formation in the Photochemical Reaction of 4-Methylanisole. Solvent and Temperature Effects on the Regiochemistry of Reaction of the Radical Cation of 4-Methylanisole Acta Chemica Scandinavica, 1996, 50, 122-131.	0.7	2
112	Photochemical Nitration by Tetranitromethane. XXXII. Adduct Formation in the Photochemical Reaction of Phenanthrene and Tetranitromethane. Australian Journal of Chemistry, 1996, 49, 469.	0.9	0
113	Photochemical Nitration by Tetranitromethane. XXIX. Adduct Formation in the Photochemical Reaction of Tetranitromethane and 1,5-Dimethylnaphthalene; Allylic Rearrangements of Adducts. Australian Journal of Chemistry, 1995, 48, 1989.	0.9	2
114	Adduct Formation in the Photochemical Reaction of 1,2,3,4-Tetramethylbenzene and Tetranitromethane Acta Chemica Scandinavica, 1995, 49, 76-77.	0.7	2
115	Photochemical Nitration by Tetranitromethane. Part XXII. Adducts as Precursors of Nitro Substitution Products from the Photolysis of 1-MethoxynaphthaleneTetranitromethane, Dehydrodimer Formation and the Regiochemistry of Trinitromethanide Ion Attack on the Radical Cation of 1-Methoxynaphthalene Acta Chemica Scandinavica. 1995. 49. 253-264.	0.7	11
116	Nitronic Ester Formation in the Reaction of a 3-Trinitromethylcyclohexene with Nitrogen Dioxide: A NitroDenitro Cyclization Reaction Acta Chemica Scandinavica, 1995, 49, 389-390.	0.7	1
117	Photochemical Nitration by Tetranitromethane. XIV. The Formation of 1,3-Dipolar Nitro Addition Products From the Photochemical Reaction of 1,2-Dimethylnaphthalene and Tetranitromethane. Australian Journal of Chemistry, 1994, 47, 1087.	0.9	1
118	Photochemical nitration by tetranitromethane. Part XVIII. The regiochemistry of nitrito/trinitromethyl and nitro/trinitromethyl addition to 2,3-dimethylnaphthalene: thermal 1,3-dipolar additions of nitro groups to alkenes. Journal of the Chemical Society Perkin Transactions II, 1994, , 1485.	0.9	8
119	Formation of a 1,3-dipolar nitro addition product from the photochemical reaction of 1,2-dimethylnaphthalene and tetranitromethane. Journal of the Chemical Society Chemical Communications, 1993, , 1513.	2.0	2
120	Accelerating quantitative ¹³ C NMR spectra using an EXtended ACquisition Time (EXACT) method. Chemical Communications, 0, , .	4.1	1