Rosana Collepardo-Guevara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 2021, 12, 1085.	5.8	245
2	Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13238-13247.	3.3	167
3	Bimolecular reaction rates from ring polymer molecular dynamics: Application to H + CH4→ H2 + CH3. Journal of Chemical Physics, 2011, 134, 044131.	1.2	156
4	Biomolecular modeling and simulation: a field coming of age. Quarterly Reviews of Biophysics, 2011, 44, 191-228.	2.4	136
5	Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study. Journal of the American Chemical Society, 2015, 137, 10205-10215.	6.6	135
6	Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8061-8066.	3.3	131
7	Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science, 2021, 1, 732-743.	3.8	128
8	Bimolecular reaction rates from ring polymer molecular dynamics. Journal of Chemical Physics, 2009, 130, 174713.	1.2	122
9	Modeling Studies of Chromatin Fiber Structure as a Function of DNA Linker Length. Journal of Molecular Biology, 2010, 403, 777-802.	2.0	98
10	Proton transfer in a polar solvent from ring polymer reaction rate theory. Journal of Chemical Physics, 2008, 128, 144502.	1.2	92
11	Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions. Nature Communications, 2021, 12, 2883.	5.8	75
12	Dynamic condensation of linker histone C-terminal domain regulates chromatin structure. Nucleic Acids Research, 2014, 42, 7553-7560.	6.5	56
13	Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model. Biophysical Journal, 2021, 120, 1219-1230.	0.2	56
14	Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Biomolecules, 2021, 11, 278.	1.8	53
15	Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters, 2022, 22, 612-621.	4.5	49
16	Energy Landscapes, Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. Journal of the American Chemical Society, 2014, 136, 18052-18061.	6.6	47
17	NAFlex: a web server for the study of nucleic acid flexibility. Nucleic Acids Research, 2013, 41, W47-W55.	6.5	45
18	Aging can transform single-component protein condensates into multiphase architectures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44

#	Article	IF	CITATIONS
19	Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid–Liquid Phase Separation. Molecules, 2020, 25, 4705.	1.7	42
20	Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes. Nucleic Acids Research, 2012, 40, 8803-8817.	6.5	40
21	Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Scientific Reports, 2021, 11, 15241.	1.6	33
22	Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7216-7224.	3.3	32
23	The Effect of Linker Histone's Nucleosome Binding Affinity on Chromatin Unfolding Mechanisms. Biophysical Journal, 2011, 101, 1670-1680.	0.2	31
24	Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles. Journal of Chemical Physics, 2019, 150, 224510.	1.2	30
25	Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling?. Current Opinion in Structural Biology, 2021, 71, 123-135.	2.6	26
26	RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Computational Biology, 2022, 18, e1009810.	1.5	25
27	A Hückel study of the effect of a molecular resonance cavity on the quantum conductance of an alkene wire. Chemical Physics Letters, 2004, 393, 367-371.	1.2	23
28	Structure and Properties of DNA in Apolar Solvents. Journal of Physical Chemistry B, 2014, 118, 8540-8548.	1.2	22
29	Targeted modulation of protein liquid–liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology, 2021, 17, e1009328.	1.5	21
30	Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Scientific Reports, 2022, 12, 4390.	1.6	20
31	Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Research, 2020, 48, 5318-5331.	6.5	19
32	Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides. Journal of the American Chemical Society, 2022, 144, 368-376.	6.6	15
33	DNA binds to a specific site of the adhesive blood-protein von Willebrand factor guided by electrostatic interactions. Nucleic Acids Research, 2020, 48, 7333-7344.	6.5	14
34	Sequence-dependent structural properties of B-DNA: what have we learned in 40Âyears?. Biophysical Reviews, 2021, 13, 995-1005.	1.5	13
35	Insights into chromatin fibre structure by <i>inÂvitro</i> and <i>in silico</i> single-molecule stretching experiments. Biochemical Society Transactions, 2013, 41, 494-500.	1.6	9
36	Forced unraveling of chromatin fibers with nonuniform linker DNA lengths. Journal of Physics Condensed Matter, 2015, 27, 064113.	0.7	9

#	Article	IF	CITATIONS
37	Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Current Opinion in Cell Biology, 2022, 75, 102067.	2.6	9