Mingfa Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034040/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step synthesized PbSe nanocrystal inks decorated 2D MoS ₂ heterostructure for high stability photodetectors with photoresponse extending to near-infrared region. Journal of Materials Chemistry C, 2022, 10, 2236-2244.	5.5	18
2	Allâ€Inorganic CsPbBr ₃ Perovskite Nanocrystals/2D Nonâ€Layered Cadmium Sulfide Selenide for Highâ€Performance Photodetectors by Energy Band Alignment Engineering. Advanced Functional Materials, 2021, 31, 2105051.	14.9	35
3	Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 51198-51204.	8.0	20
4	Flexible Self-Powered Real-Time Ultraviolet Photodetector by Coupling Triboelectric and Photoelectric Effects. ACS Applied Materials & amp; Interfaces, 2020, 12, 19384-19392.	8.0	80
5	High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure. Science China Materials, 2019, 62, 225-235.	6.3	56
6	Frequency-independent self-powered sensing based on capacitive impedance matching effect of triboelectric nanogenerator. Nano Energy, 2019, 65, 103984.	16.0	44
7	Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy, 2019, 62, 442-448.	16.0	63
8	Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector. Nano Energy, 2019, 59, 492-499.	16.0	50
9	A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale, 2019, 11, 7513-7519.	5.6	55
10	Impedance Matching Effect between a Triboelectric Nanogenerator and a Piezoresistive Pressure Sensor Induced Selfâ€Powered Weighing. Advanced Materials Technologies, 2018, 3, 1800054.	5.8	49
11	Selfâ€Powered Vehicle Emission Testing System Based on Coupling of Triboelectric and Chemoresistive Effects. Advanced Functional Materials, 2018, 28, 1703420.	14.9	95
12	PbS Quantum Dots/2D Nonlayered CdS <i>_x</i> Se _{1–<i>x</i>} Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 43887-43895.	8.0	29
13	Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy, 2018, 54, 156-162.	16.0	65
14	Toward self-powered photodetection enabled by triboelectric nanogenerators. Journal of Materials Chemistry C, 2018, 6, 11893-11902.	5.5	45
15	All flexible electrospun papers based self-charging power system. Nano Energy, 2017, 38, 210-217.	16.0	97
16	Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39, 608-615.	16.0	117
17	One-dimensional CdS _x Se _{1â^'x} nanoribbons for high-performance rigid and flexible photodetectors. Journal of Materials Chemistry C, 2017, 5, 7521-7526.	5.5	29
18	Flexible piezoelectric nanogenerators based on silicon nanowire/α-quartz composites for mechanical energy harvesting. Materials Letters, 2015, 160, 222-226.	2.6	16

Mingfa Peng

#	Article	IF	CITATIONS
19	Ultrasensitive surface-enhanced Raman scattering based gold deposited silicon nanowires. Applied Physics Letters, 2014, 104, .	3.3	14
20	Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon, 2013, 52, 559-564.	10.3	104
21	Magnetism-assisted assembled porous Fe3O4 nanoparticles and their electrochemistry for dopamine sensing. Microporous and Mesoporous Materials, 2012, 153, 35-40.	4.4	35
22	Electronic Structure and Photoluminescence Origin of Single-Crystalline Germanium Oxide Nanowires with Green Light Emission. Journal of Physical Chemistry C, 2011, 115, 11420-11426.	3.1	24
23	Reductive Self-Assembling of Ag Nanoparticles on Germanium Nanowires and Their Application in Ultrasensitive Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2011, 23, 3296-3301.	6.7	45
24	Thermal phase transformation of In2Se3 nanowires studied by in situ synchrotron radiation X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 6944.	6.7	40