Cecilia Inés Alvarez Igarzabal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033936/publications.pdf

Version: 2024-02-01

CECILIA INéS ALVAREZ

#	Article	IF	CITATIONS
1	Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids, 2013, 33, 289-296.	5.6	228
2	Cross-linked soy protein as material for biodegradable films: Synthesis, characterization and biodegradation. Journal of Food Engineering, 2011, 106, 331-338.	2.7	181
3	Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocolloids, 2018, 84, 424-434.	5.6	139
4	Crossing biological barriers with nanogels to improve drug delivery performance. Journal of Controlled Release, 2019, 307, 221-246.	4.8	118
5	Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocolloids, 2015, 43, 777-784.	5.6	116
6	Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids, 2019, 89, 758-764.	5.6	111
7	Crosslinked casein-based micelles as a dually responsive drug delivery system. Polymer Chemistry, 2018, 9, 3499-3510.	1.9	41
8	Novel Poly(NIPA- <i>co</i> -AAc) Functional Hydrogels with Potential Application in Drug Controlled Release. Molecular Pharmaceutics, 2014, 11, 2239-2249.	2.3	39
9	Development of edible films prepared by soy protein and the galactomannan fraction extracted from Gleditsia triacanthos (Fabaceae) seed. Food Hydrocolloids, 2019, 97, 105227.	5.6	35
10	Crosslinked soy protein films and their application as ophthalmic drug delivery system. Materials Science and Engineering C, 2015, 51, 73-79.	3.8	30
11	A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release. Materials Science and Engineering C, 2016, 69, 236-246.	3.8	29
12	pH-responsive casein-based films and their application as functional coatings in solid dosage formulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 1-9.	2.3	18
13	Study of Graft Copolymerization of Soy Protein-Methyl Methacrylate: Preparation and Characterization of Grafted Films. Journal of Polymers and the Environment, 2017, 25, 214-220.	2.4	17
14	Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. Materials Science and Engineering C, 2021, 118, 111383.	3.8	17
15	Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. European Polymer Journal, 2021, 145, 110237.	2.6	14
16	Synthesis of macroporous polymers with radical scavenging properties by immobilization of polyphenolic compounds. Reactive and Functional Polymers, 2012, 72, 807-813.	2.0	13
17	Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Applied Surface Science, 2016, 369, 422-429.	3.1	12
18	Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. International Journal of Biological Macromolecules, 2020, 154, 446-455.	3.6	12

CECILIA INéS ALVAREZ

#	Article	IF	CITATIONS
19	Exploiting cyanine dye J-aggregates/monomer equilibrium in hydrophobic protein pockets for efficient multi-step phototherapy: an innovative concept for smart nanotheranostics. Nanoscale, 2021, 13, 8909-8921.	2.8	9
20	New hydrogel obtained from a novel dendritic monomer as a promising candidate for biomedical applications. Journal of Biomedical Materials Research - Part A, 2013, 101, 3372-3381.	2.1	8
21	Synthesis and characterization of hydrogels from 1-vinylimidazole. Highly resistant co-polymers with synergistic effect. Materials Chemistry and Physics, 2015, 153, 365-375.	2.0	7
22	Study of the structure/property relationship of nanomaterials for development of novel food packaging. , 2017, , 265-294.		2
23	Synthesis and characterization of novel dendritic macroporous monoliths. European Polymer Journal, 2018, 106, 102-111.	2.6	2
24	Redefining the chemistry of super-macroporous materials: when dendritic molecules meet polymer cryogels. Polymer Chemistry, 2020, 11, 4507-4519.	1.9	2