Lorin Matthews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033904/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystallization Dynamics of a Single Layer Complex Plasma. Physical Review Letters, 2010, 105, 115004.	2.9	103
2	CHARGING OF AGGREGATE GRAINS IN ASTROPHYSICAL ENVIRONMENTS. Astrophysical Journal, 2013, 763, 77.	1.6	54
3	Slow Plastic Creep of 2D Dusty Plasma Solids. Physical Review Letters, 2014, 113, 025002.	2.9	54
4	CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS. Astrophysical Journal, 2012, 744, 8.	1.6	49
5	One-dimensional vertical dust strings in a glass box. Physical Review E, 2011, 84, 016411.	0.8	38
6	Helical structures in vertically aligned dust particle chains in a complex plasma. Physical Review E, 2013, 87, 053106.	0.8	38
7	Effects of the Charge-Dipole Interaction on the Coagulation of Fractal Aggregates. IEEE Transactions on Plasma Science, 2004, 32, 586-593.	0.6	35
8	Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas. Physical Review E, 2019, 99, 013203.	0.8	31
9	Phase transitions in a dusty plasma with two distinct particle sizes. Advances in Space Research, 2008, 41, 1510-1513.	1.2	27
10	Determination of the levitation limits of dust particles within the sheath in complex plasma experiments. Physics of Plasmas, 2012, 19, .	0.7	27
11	Fluid modeling of void closure in microgravity noble gas complex plasmas. Physical Review E, 2010, 81, 056402.	0.8	25
12	Mode coupling and resonance instabilities in quasi-two-dimensional dust clusters in complex plasmas. Physical Review E, 2014, 90, 033109.	0.8	25
13	The magnetic field inside a protoplanetary disc gap opened by planets of different masses. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3277-3287.	1.6	25
14	DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET. Astrophysical Journal, 2016, 823, 80.	1.6	25
15	Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma. Physical Review E, 2014, 90, 033101.	0.8	24
16	Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility. New Journal of Physics, 2015, 17, 053041.	1.2	23
17	Dust charging in dynamic ion wakes. Physics of Plasmas, 2020, 27, .	0.7	23
18	Dust particle charge in plasma with ion flow and electron depletion near plasma boundaries. Physics of Plasmas, 2011, 18, .	0.7	22

#	Article	IF	CITATIONS
19	Mode couplings and resonance instabilities in dust clusters. Physical Review E, 2013, 88, 043103.	0.8	22
20	Dust as probe for horizontal field distribution in low pressure gas discharges. Plasma Sources Science and Technology, 2014, 23, 045008.	1.3	22
21	Gravitoelectrodynamics in SaturnÂs F ring: encounters with Prometheus and Pandora. Journal of Physics A, 2003, 36, 6207-6214.	1.6	21
22	Digital imaging and analysis of dusty plasmas. Advances in Space Research, 2004, 34, 2374-2378.	1.2	20
23	COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING. Astrophysical Journal, 2013, 776, 103.	1.6	20
24	Dusty plasma correlation function experiment. Advances in Space Research, 2004, 34, 2379-2383.	1.2	17
25	Ion-wake field inside a glass box. Physical Review E, 2016, 94, 033201.	0.8	17
26	lonization waves in the PK-4 direct current neon discharge. Plasma Sources Science and Technology, 2020, 29, 115014.	1.3	17
27	Formation of Cosmic Dust Bunnies. IEEE Transactions on Plasma Science, 2007, 35, 260-265.	0.6	16
28	Effect of dipole–dipole charge interactions on dust coagulation. New Journal of Physics, 2009, 11, 063030.	1.2	16
29	Simple method to measure the interaction potential of dielectric grains in a dusty plasma. Physical Review E, 2010, 82, 036401.	0.8	16
30	Dust as probes: Determining confinement and interaction forces. Physical Review E, 2020, 102, 043210.	0.8	16
31	Experimental and computational characterization of a modified GEC cell for dusty plasma experiments. New Journal of Physics, 2009, 11, 063024.	1.2	14
32	Photophoresis on polydisperse basalt microparticles under microgravity. Journal of Aerosol Science, 2014, 76, 126-137.	1.8	14
33	Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 135205.	0.7	14
34	Dipole–Dipole Interactions of Charged-Magnetic Grains. IEEE Transactions on Plasma Science, 2010, 38, 792-797.	0.6	13
35	Vibrational Modes and Instabilities of a Dust-Particle Pair in a Complex Plasma. IEEE Transactions on Plasma Science, 2010, 38, 826-832.	0.6	13
36	Interaction force in a vertical dust chain inside a glass box. Physical Review E, 2014, 90, 013107.	0.8	13

#	Article	IF	CITATIONS
37	Dynamics of a dust crystal with two different size dust species. Advances in Space Research, 2006, 38, 2564-2570.	1.2	12
38	Charging and Growth of Fractal Dust Grains. IEEE Transactions on Plasma Science, 2008, 36, 310-314.	0.6	12
39	Mode Couplings and Conversions for Horizontal Dust Particle Pairs in Complex Plasmas. IEEE Transactions on Plasma Science, 2013, 41, 745-753.	0.6	12
40	Dusty plasma cavities: Probe-induced and natural. Physical Review E, 2015, 91, 063105.	0.8	12
41	Temperature measurement of a dust particle in a RF plasma GEC reference cell. Journal of Plasma Physics, 2016, 82, .	0.7	11
42	Transport properties of disordered twoâ€dimensional complex plasma crystal. Contributions To Plasma Physics, 2018, 58, 209-216.	0.5	11
43	The initial structure of chondrule dust rims I: Electrically neutral grains. Icarus, 2019, 321, 99-111.	1.1	11
44	Charged grains in Saturn's F-Ring: interaction with Saturn's magnetic field. Advances in Space Research, 2004, 33, 2292-2297.	1.2	9
45	Probing the Sheath Electric Field With a Crystal Lattice by Using Thermophoresis in Dusty Plasma. IEEE Transactions on Plasma Science, 2010, 38, 768-773.	0.6	9
46	Two-dimensional and three-dimensional Coulomb clusters in parabolic traps. Physics of Plasmas, 2014, 21, .	0.7	9
47	Mode couplings and resonance instabilities in finite dust chains. Physical Review E, 2015, 91, 053101.	0.8	9
48	Photophoretic force on aggregate grains. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2582-2591.	1.6	9
49	The influence of monomer shape on aggregate morphologies. Astronomy and Astrophysics, 2012, 539, A99.	2.1	9
50	Effect of ionization waves on dust chain formation in a DC discharge. Journal of Plasma Physics, 2021, 87, .	0.7	9
51	Analysis of magnetic field plasma interactions using microparticles as probes. Physical Review E, 2015, 92, 023107.	0.8	8
52	Physical interpretation of the spectral approach to delocalization in infinite disordered systems. Materials Research Express, 2016, 3, 125904.	0.8	8
53	Influence of temporal variations in plasma conditions on the electric potential near self-organized dust chains. Physics of Plasmas, 2022, 29, .	0.7	8
54	Effect of multi-sized dust distribution on local plasma sheath potentials. Advances in Space Research, 2006, 38, 2575-2580.	1.2	7

#	Article	IF	CITATIONS
55	Using dust as probes to determine sheath extent and structure. Journal of Plasma Physics, 2016, 82, .	0.7	7
56	Multipole Expansions of Aggregate Charge: How Far to Go?. IEEE Transactions on Plasma Science, 2016, 44, 519-524.	0.6	7
57	Discrete stochastic charging of aggregate grains. Physical Review E, 2018, 97, 053207.	0.8	6
58	Nonlinear mode coupling and internal resonance observed in a dusty plasma. New Journal of Physics, 2019, 21, 103051.	1.2	6
59	Nonlinear response of vertical paired structure in complex plasma. Plasma Physics and Controlled Fusion, 2019, 61, 055004.	0.9	6
60	A machine learning based Bayesian optimization solution to non-linear responses in dusty plasmas. Machine Learning: Science and Technology, 2021, 2, 035017.	2.4	6
61	Numerical study of anomalous diffusion of light in semicrystalline polymer structures. Physical Review Research, 2020, 2, .	1.3	6
62	Modeling Agglomeration of Dust Particles in Plasma. AIP Conference Proceedings, 2011, , .	0.3	5
63	Delocalization in infinite disordered two-dimensional lattices of different geometry. Physical Review B, 2017, 96, .	1.1	5
64	Detailed Model of the Growth of Fluffy Dust Aggregates in a Protoplanetary Disk: Effects of Nebular Conditions. Astrophysical Journal, 2020, 897, 182.	1.6	5
65	The initial structure of chondrule dust rims II: Charged grains. Icarus, 2021, 354, 114053.	1.1	5
66	Glow and Dust in Plasma Boundaries. IEEE Transactions on Plasma Science, 2013, 41, 799-803.	0.6	4
67	Vertical-probe-induced asymmetric dust oscillation in complex plasma. Physical Review E, 2013, 87, 053109.	0.8	4
68	Mapping the Plasma Potential in a Glass Box. IEEE Transactions on Plasma Science, 2019, 47, 3079-3086.	0.6	4
69	Spectral approach to transport in a two-dimensional honeycomb lattice with substitutional disorder. Physical Review B, 2019, 99, .	1.1	4
70	Fractional Laplacian spectral approach to turbulence in a dusty plasma monolayer. Physics of Plasmas, 2021, 28, .	0.7	4
71	The effect of dust charge variation, due to ion flow and electron depletion, on dust levitation. AIP Conference Proceedings, 2011, , .	0.3	3
72	Vertical Interaction Between Dust Particles Confined in a Glass Box in a Complex Plasma. IEEE Transactions on Plasma Science, 2013, 41, 794-798.	0.6	3

#	Article	IF	CITATIONS
73	Guest Editorial Special Issue on Dusty Plasmas. IEEE Transactions on Plasma Science, 2013, 41, 733-734.	0.6	3
74	Effects of monomer shape on the formation of aggregates from a power law monomer distribution. New Journal of Physics, 2013, 15, 073026.	1.2	3
75	Particle Growth in an Experimental Dusty Plasma System. Chinese Physics Letters, 2018, 35, 125201.	1.3	3
76	Charging of fractal dust agglomerates in a plasma environment. , 2007, , .		2
77	Agglomeration of Dust Particles in the Lab. AIP Conference Proceedings, 2011, , .	0.3	2
78	Mapping of force fields in a capacitively driven radiofrequency plasma discharge. Journal of Plasma Physics, 2016, 82, .	0.7	2
79	Comparison of Plasma Magnetic Field Interactions in a Static and Dynamic Plasma Facility. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pe_21-Pe_26.	0.1	2
80	Dust Particle Pair Correlation Functions and the Nonlinear Effect of Interaction Potentials. IEEE Transactions on Plasma Science, 2019, 47, 3057-3062.	0.6	2
81	A model of coagulation in dust clouds during grain charging. Advances in Space Research, 2004, 34, 2384-2389.	1.2	1
82	The effect of electrode heating on the discharge parameters in complex plasma experiments. Plasma Sources Science and Technology, 2011, 20, 015026.	1.3	1
83	Simple experiment on the sputtering rate of solids in gas discharges. Physics of Plasmas, 2017, 24, .	0.7	1
84	Torsion Excitation in Dusty Plasma Crystals. , 2022, , .		1
85	Numerical Simulation of Gravitoelectrodynamics in Dusty Plasmas. , 2002, , 199-202.		0
86	Charging of Fractal Dust Agglomerates in a Plasma Environment. , 2007, , .		0
87	Investigation of dust wake field oscillations. , 2007, , .		0
88	Diffusion in single layer quasi-magnetized strongly coupled dusty plasmas. , 2016, , .		0
89	Using Dust Grains to Measure Plasma Conditions with a Changing Number Density. , 2021, , .		0
90	Examining Ionization Wave Effects on Self-Organization of Dust Chains*. , 2021, , .		0

#	Article	IF	CITATIONS
91	Dust in Protoplanetary Environments. , 2021, , .		Ο
92	Determining Forces On Dust Grains In A Plasma With A Position-Dependent Number Density. , 2022, , .		0
93	Torsion density related to electrode and crystal size. , 2022, , .		Ο
94	An Experimental Investigation of Charging Methods on the Lunar Surface. , 2022, , .		0