Bin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033829/publications.pdf Version: 2024-02-01

RIN 7HOU

#	Article	IF	CITATIONS
1	A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring. Journal of Environmental Sciences, 2023, 123, 3-14.	6.1	14
2	Comparative observation of aerosol vertical profiles in urban and suburban areas: Impacts of local and regional transport. Science of the Total Environment, 2022, 805, 150363.	8.0	5
3	Emissions and health risk assessment of process-based volatile organic compounds of a representative petrochemical enterprise in East China. Air Quality, Atmosphere and Health, 2022, 15, 1095-1109.	3.3	6
4	Investigation on the urban ambient isoprene and its oxidation processes. Atmospheric Environment, 2022, 270, 118870.	4.1	6
5	MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass. Journal of Environmental Sciences, 2022, 120, 63-73.	6.1	5
6	Clustering Analysis on Drivers of O3 Diurnal Pattern and Interactions with Nighttime NO3 and HONO. Atmosphere, 2022, 13, 351.	2.3	3
7	Vertically increased NO3 radical in the nocturnal boundary layer. Science of the Total Environment, 2021, 763, 142969.	8.0	20
8	Investigating the Sources of Formaldehyde and Corresponding Photochemical Indications at a Suburb Site in Shanghai From MAXâ€ĐOAS Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033351.	3.3	15
9	Study on the measurement of isoprene by differential optical absorption spectroscopy. Atmospheric Measurement Techniques, 2021, 14, 2649-2657.	3.1	2
10	Cause analysis of PM2.5 pollution during the COVID-19 lockdown in Nanning, China. Scientific Reports, 2021, 11, 11119.	3.3	8
11	Atmospheric formaldehyde, glyoxal and their relations to ozone pollution under low- and high-NOx regimes in summertime Shanghai, China. Atmospheric Research, 2021, 258, 105635.	4.1	14
12	Characterization and influence of odorous gases on the working surface of a typical landfill site: A case study in a Chinese megacity. Atmospheric Environment, 2021, 262, 118628.	4.1	11
13	Association of lead and cadmium exposure with kidney stone incidence: A study on the non-occupational population in Nandan of China. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126852.	3.0	11
14	OMI-observed HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO â^• NO ₂ ratio. Atmospheric Chemistry and P 2021, 21, 15447-15460.	ˈh¥ps9cs,	24
15	Influence of ship direct emission on HONO sources in channel environment. Atmospheric Environment, 2020, 242, 117819.	4.1	8
16	Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032058.	3.3	30
17	Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics, 2020, 20, 1217-1232.	4.9	71
18	Verification of satellite ozone/temperature profile products and ozone effective height/temperature over Kunming, China. Science of the Total Environment, 2019, 661, 35-47.	8.0	10

Вім Zhou

#	Article	IF	CITATIONS
19	Application of temperature dependent ozone absorption cross-sections in total ozone retrieval at Kunming and Hohenpeissenberg stations. Atmospheric Environment, 2019, 215, 116890.	4.1	4
20	Aerosol Optical Radiation Properties in Kunming (the Low–Latitude Plateau of China) and Their Relationship to the Monsoon Circulation Index. Remote Sensing, 2019, 11, 2911.	4.0	1
21	Surveillance of SO ₂ and NO ₂ from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance. Atmospheric Chemistry and Physics, 2019, 19, 13611-13626.	4.9	32
22	OMI satellite observed formaldehyde column from 2006 to 2015 over Xishuangbanna, southwest China, and validation using ground based zenith-sky DOAS. Science of the Total Environment, 2018, 613-614, 168-175.	8.0	10
23	Aerosol vertical profile retrieved from ground-based MAX-DOAS observation and characteristic distribution during wintertime in Shanghai, China. Atmospheric Environment, 2018, 192, 193-205.	4.1	26
24	On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Science of the Total Environment, 2017, 580, 974-983.	8.0	47
25	Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai, China. Atmospheric Environment, 2017, 154, 167-178.	4.1	33
26	Evaluation and potential improvements of WRF/CMAQ in simulating multi-levels air pollution in megacity Shanghai, China. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2513-2526.	4.0	16
27	Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. Science of the Total Environment, 2016, 571, 1454-1466.	8.0	109
28	Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3. Ecotoxicology and Environmental Safety, 2016, 133, 226-234.	6.0	15
29	Measurements of nitrous acid (HONO) in urban area of Shanghai, China. Environmental Science and Pollution Research, 2016, 23, 5818-5829.	5.3	25
30	Gas-phase ammonia and PM2.5 ammonium in a busy traffic area of Nanjing, China. Environmental Science and Pollution Research, 2016, 23, 1691-1702.	5.3	31
31	Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Scientific Reports, 2015, 5, 15842.	3.3	165
32	A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmospheric Research, 2015, 153, 235-249.	4.1	53
33	Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China. PLoS ONE, 2015, 10, e0131878.	2.5	18
34	Study on the Traffic Air Pollution inside and outside a Road Tunnel in Shanghai, China. PLoS ONE, 2014, 9, e112195.	2.5	46
35	Urban atmospheric formaldehyde concentrations measured by a differential optical absorption spectroscopy method. Environmental Sciences: Processes and Impacts, 2014, 16, 291-297.	3.5	11
36	Observation of NO3 radicals over Shanghai, China. Atmospheric Environment, 2013, 70, 401-409.	4.1	49

Вім Zhou

#	Article	IF	CITATIONS
37	Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China. Atmospheric Environment, 2013, 77, 718-724.	4.1	63
38	Characteristics and ship traffic source identification of air pollutants in China's largest port. Atmospheric Environment, 2013, 64, 277-286.	4.1	183
39	Correlation between atmospheric O4 and H2O absorption in visible band and its implication to dust and haze events in Shanghai, China. Atmospheric Environment, 2012, 62, 164-171.	4.1	5
40	Remote sensing of NO ₂ emission from the central urban area of Shanghai (China) using the mobile DOAS technique. Journal of Geophysical Research, 2012, 117, .	3.3	27
41	Observations of nitrous acid and its relative humidity dependence in Shanghai. Journal of Environmental Sciences, 2006, 18, 910-915.	6.1	36
42	Measurements of NO2, SO2, O3, Benzene and Toluene Using Differential Optical Absorption Spectroscopy (DOAS) in Shanghai, China. Annali Di Chimica, 2006, 96, 365-375.	0.6	11
43	Developing of DOAS in China. , 2003, , .		1