Wenlong Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033651/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Grid-friendly wind power systems based on the synchronverter technology. Energy Conversion and Management, 2015, 89, 719-726.	9.2	94
2	Stabilization of Cascaded DC/DC Converters via Adaptive Series-Virtual-Impedance Control of the Load Converter. IEEE Transactions on Power Electronics, 2016, 31, 6057-6063.	7.9	62
3	An Overview of Soft Open Points in Electricity Distribution Networks. IEEE Transactions on Smart Grid, 2022, 13, 1899-1910.	9.0	62
4	Self-Synchronized Universal Droop Controller. IEEE Access, 2016, 4, 7145-7153.	4.2	57
5	Control of Ripple Eliminators to Improve the Power Quality of DC Systems and Reduce the Usage of Electrolytic Capacitors. IEEE Access, 2016, 4, 2177-2187.	4.2	42
6	PLL-Less Nonlinear Current-Limiting Controller for Single-Phase Grid-Tied Inverters: Design, Stability Analysis, and Operation Under Grid Faults. IEEE Transactions on Industrial Electronics, 2016, 63, 5582-5591.	7.9	38
7	DQ Impedance Stability Analysis for the Power-Controlled Grid-Connected Inverter. IEEE Transactions on Energy Conversion, 2020, 35, 1762-1771.	5.2	32
8	Reliability and Cost-Oriented Analysis, Comparison and Selection of Multi-Level MVdc Converters. IEEE Transactions on Power Delivery, 2021, 36, 3945-3955.	4.3	32
9	A new experimental study of input-output feedback linearization based control of Boost type DC/DC converter. , 2010, , .		15
10	A new control strategy for improving performance of boost DC/DC converter based on input-output feedback linearization. , 2010, , .		14
11	A Multi-Function Integrated Circuit Breaker for DC Grid Applications. IEEE Transactions on Power Delivery, 2021, 36, 566-577.	4.3	14
12	Unlock the Flexibility of Combined Heat and Power for Frequency Response by Coordinative Control With Batteries. IEEE Transactions on Industrial Informatics, 2021, 17, 3209-3219.	11.3	10
13	Hybrid Data-Driven Modeling Methodology for Fast and Accurate Transient Simulation of SiC MOSFETs. IEEE Transactions on Power Electronics, 2022, 37, 440-451.	7.9	10
14	A Low-Loss Integrated Circuit Breaker for HVDC Applications. IEEE Transactions on Power Delivery, 2022, 37, 472-485.	4.3	6
15	Analysis and Mitigation of DC Voltage Imbalance for Medium-Voltage Cascaded Three-Level Neutral-Point-Clamped Converters. IEEE Transactions on Power Electronics, 2022, 37, 4320-4336.	7.9	6
16	A Step-by-step Modelling Approach for SiC Half-bridge Modules Considering Temperature Characteristics. , 2020, , .		6
17	Hybrid Open Points: An Efficient Tool for Increasing Network Capacity in Distribution Systems. IEEE Transactions on Power Delivery, 2022, 37, 1340-1343.	4.3	5
18	Multi-Objective Design of Single-Phase Differential Buck Inverters With Active Power Decoupling. IEEE Open Journal of Power Electronics, 2022, 3, 105-114.	5.7	5

Wenlong Ming

#	Article	IF	CITATIONS
19	Coupling Influence on the dq Impedance Stability Analysis for the Three-Phase Grid-Connected Inverter. Energies, 2019, 12, 3676.	3.1	3
20	Coordinative Control of CHP Generation and Battery for Frequency Response. , 2019, , .		3
21	Dynamic Average Converter Model for MVDC Link Harmonic Analysis. , 2019, , .		3
22	A Four-leg Buck Inverter for Three-phase Four-wire Systems with the Function of Reducing DC-bus Ripples. , 2019, , .		3
23	Maximum power extraction from a hydrokinetic energy conversion system. IET Renewable Power Generation, 2019, 13, 1411-1419.	3.1	3
24	Demonstration of Converter Control Interactions in MMC-HVDC Systems. Electronics (Switzerland), 2022, 11, 175.	3.1	2
25	Energy-saving Driving Mode for PHEV Drivers based on Energy Cycle Model. , 2013, , .		1
26	Current-stress reduction of the neutral inductor in a rectifier with two outputs. , 2016, , .		1
27	Interlinked Solid-state MVDC Circuit Breaker with Current Regulation Capability. , 2019, , .		1
28	Reduction of DC-link Ripples for SiC-based Three-phase Four-wire Inverters with Unbalanced Loads. , 2019, , .		1
29	SiC-Based Improved Neutral Legs With Reduced Capacitors for Three-Phase Four-Wire EV Chargers. IEEE Transactions on Transportation Electrification, 2022, 8, 2565-2582.	7.8	1
30	A SiC-based Neutral Leg for the Three-phase Four-wire Inverter. , 2019, , .		0
31	Improved Hold-Up Time for WBG-based Single-Phase Converters. , 2019, , .		Ο
32	Dual-Buck Arbitrary Voltage Divider with One Output Having Reduced Ripples. , 2018, , .		0
33	A Low-Loss Low-Cost DC Circuit Breaker for Power System Protection. , 2020, , .		0