Xin Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033144/publications.pdf

Version: 2024-02-01

67	1,854 citations	257101	276539
papers	citations	h-index	g-index
68	68	68	3139
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
2	Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydrate Polymers, 2011, 84, 195-202.	5.1	116
3	Self-Assembly and Dual-Stimuli Sensitivities of Hydroxypropylcellulose- <i>graft</i> poly(<i>N</i> , <i>N</i> -dimethyl aminoethyl methacrylate) Copolymers in Aqueous Solution. Langmuir, 2010, 26, 8697-8703.	1.6	89
4	Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. Journal of Materials Chemistry, 2012, 22, 19964.	6.7	88
5	Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polymer International, 2007, 56, 138-143.	1.6	79
6	Construction of Robust Enzyme Nanocapsules for Effective Organophosphate Decontamination, Detoxification, and Protection. Advanced Materials, 2013, 25, 2212-2218.	11.1	79
7	Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Research, 2016, 9, 1022-1031.	5.8	77
8	Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis. Biomaterials, 2018, 178, 738-750.	5.7	70
9	Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polymer Chemistry, 2011, 2, 672-678.	1.9	64
10	pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy. Theranostics, 2017, 7, 4537-4550.	4.6	60
11	Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials, 2017, 144, 188-198.	5 . 7	57
12	Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease. Biomacromolecules, 2017, 18, 461-474.	2.6	55
13	Supramolecular nanoscale drug-delivery system with ordered structure. National Science Review, 2019, 6, 1128-1137.	4.6	52
14	Celecoxib-Induced Self-Assembly of Smart Albumin-Doxorubicin Conjugate for Enhanced Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8555-8565.	4.0	36
15	Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy. Biomaterials Science, 2017, 5, 686-697.	2.6	32
16	Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials, 2017, 147, 1-13.	5.7	32
17	Reaction-Based Color-Convertible Fluorescent Probe for Ferroptosis Identification. Analytical Chemistry, 2018, 90, 9218-9225.	3.2	31
18	Hydrogen Peroxide-Responsive Nanoprobe Assists Circulating Tumor Cell Identification and Colorectal Cancer Diagnosis. Analytical Chemistry, 2017, 89, 5966-5975.	3.2	30

#	Article	IF	CITATIONS
19	"Bottom-up―Construction of Multi-Polyprodrug-Arm Hyperbranched Amphiphiles for Cancer Therapy. Bioconjugate Chemistry, 2017, 28, 1470-1480.	1.8	30
20	Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials, 2020, 255, 120071.	5.7	29
21	Multicolor Fluorescent Polymers Inspired from Green Fluorescent Protein. Macromolecules, 2015, 48, 5969-5979.	2.2	28
22	Mustard-inspired delivery shuttle for enhanced blood–brain barrier penetration and effective drug delivery in glioma therapy. Biomaterials Science, 2017, 5, 1041-1050.	2.6	28
23	"Bottom-Up―Construction of Hyperbranched Poly(prodrug- <i>co</i> photosensitizer) Amphiphiles Unimolecular Micelles for Chemo-Photodynamic Dual Therapy. ACS Applied Materials & Dual	4.0	28
24	Endoplasmic Reticulum–Targeted Fluorescent Nanodot with Large Stokes Shift for Vesicular Transport Monitoring and Longâ€Term Bioimaging. Small, 2018, 14, e1800223.	5.2	28
25	A Redox-Responsive, In-Situ Polymerized Polyplatinum(IV)-Coated Gold Nanorod as An Amplifier of Tumor Accumulation for Enhanced Thermo-Chemotherapy. Biomaterials, 2021, 266, 120400.	5.7	26
26	Selfâ€Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo. Macromolecular Bioscience, 2017, 17, 1700174.	2.1	25
27	Regulation of the thermal sensitivity of hydroxypropyl cellulose by poly(N-isopropylacryamide) side chains. Carbohydrate Polymers, 2013, 95, 155-160.	5.1	24
28	Spatial Confined Synergistic Enzymes with Enhanced Uricolytic Performance and Reduced Toxicity for Effective Gout Treatment. Small, 2018, 14, e1801865.	5.2	24
29	Recent progress on DNA block copolymer. Chinese Chemical Letters, 2017, 28, 1822-1828.	4.8	23
30	Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. Journal of Controlled Release, 2017, 255, 54-61.	4.8	22
31	Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomaterials Science, 2020, 8, 5230-5240.	2.6	22
32	Biodegradable Scaffolds for Urethra Tissue Engineering Based on 3D Printing. ACS Applied Bio Materials, 2020, 3, 2007-2016.	2.3	22
33	Folic acid-conjugated BSA nanocapsule (n-BSA–FA) for cancer targeted radiotherapy and imaging. RSC Advances, 2015, 5, 88560-88566.	1.7	21
34	Designing hyperbranched polymers for gene delivery. Molecular Systems Design and Engineering, 2016, 1, 25-39.	1.7	21
35	Robust enzyme–silica composites made from enzyme nanocapsules. Chemical Communications, 2015, 51, 9628-9631.	2.2	20
36	Host–guest binding motifs based on hyperbranched polymers. Chemical Communications, 2016, 52, 11728-11743.	2.2	17

#	Article	IF	Citations
37	Polygemcitabine nanogels with accelerated drug activation for cancer therapy. Chemical Communications, 2019, 55, 6603-6606.	2.2	17
38	Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling. Molecular Medicine Reports, 2015, 11, 2608-2614.	1.1	16
39	Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale, 2021, 13, 15021-15030.	2.8	16
40	Construction of biomimetic long-circulation delivery platform encapsulated by zwitterionic polymers for enhanced penetration of blood–brain barrier. RSC Advances, 2017, 7, 20766-20778.	1.7	15
41	Self-encapsulated enzyme through in-situ growth of polypyrrole for high-performance enzymatic biofuel cell. Chemical Engineering Journal, 2022, 429, 132148.	6.6	15
42	Rational design of electroactive redox enzyme nanocapsules for high-performance biosensors and enzymatic biofuel cell. Biosensors and Bioelectronics, 2021, 174, 112805.	5.3	14
43	A fluorescent light-up aggregation-induced emission probe for screening gefitinib-sensitive non-small cell lung carcinoma. Biomaterials Science, 2017, 5, 792-799.	2.6	13
44	Synthesis and properties of ZnS/ polyimide nanocomposite films. Polymer International, 2007, 56, 601-605.	1.6	11
45	Fabrication of Activity-Reporting Glucose Oxidase Nanocapsules with Oxygen-Independent Fluorescence Variation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26005-26015.	4.0	11
46	A new insight into the reversal of multidrug resistance in cancer by nanodrugs. Biomaterials Science, 2019, 7, 3489-3496.	2.6	11
47	Synthesis, Characterization, and In Vivo Biodistribution of ¹²⁵ I-Labeled Dex- <i>g</i> -PMAGGCONHTyr. Biomacromolecules, 2011, 12, 1851-1859.	2.6	10
48	Synthesis of Multiarm Star Polymer Based on Hyperbranched Polyester Core and Poly($\hat{l}\mu$ -caprolactone) Arms and Its Application in UV-Curable Coating. ACS Omega, 2018, 3, 13928-13934.	1.6	10
49	Laser-Responsive Polymeric Nanomicelles to Subdue Tumor Multidrug Resistance Based on Mild Photodynamic Therapy and Chemotherapy. ACS Applied Nano Materials, 2020, 3, 6702-6710.	2.4	10
50	Morphology design and control of polymer particles by regulating the droplet flowing mode in microfluidic chips. Polymer Chemistry, 2017, 8, 2953-2958.	1.9	9
51	Coâ€Delivery of 131 I and Primaâ€1 by Selfâ€Assembled CD44â€Targeted Nanoparticles for Anaplastic Thyroid Carcinoma Theranostics. Advanced Healthcare Materials, 2021, 10, 2001029.	3.9	7
52	Material Perspective on the Structural Design of Artificial Meat. Advanced Sustainable Systems, 2021, 5, 2100017.	2.7	7
53	Investigation of the Formation Process of PNIPAM-Based Ionic Microgels. ACS Omega, 2017, 2, 8788-8793.	1.6	6
54	Light-Trigerred Cellular Epigenetic Molecule Release To Reverse Tumor Multidrug Resistance. Bioconjugate Chemistry, 2018, 29, 1344-1351.	1.8	6

#	Article	IF	CITATIONS
55	Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 789-794.	2.3	6
56	Role Transformation of Poly(<i>N</i> -isopropylacrylamide) Microgels from Stabilizer to Seed in Dispersion Polymerization by Controlling the Water Content in Methanol–Water Mixture. Langmuir, 2018, 34, 3420-3425.	1.6	6
57	"Bottomâ€Up―Fabrication of BODIPYâ€Functionalized Fluorescent Hyperbranched Glycopolymers for Hepatomaâ€Targeted Imaging. Macromolecular Bioscience, 2018, 18, e1700381.	2.1	6
58	Supramolecular dendritic polymers for diagnostic and theranostic applications. Science China Materials, 2018, 61, 1444-1453.	3.5	5
59	An efficient method for CTCs screening with excellent operability by integrating Parsortixâ,,¢-like cell separation chip and selective size amplification. Biomedical Microdevices, 2018, 20, 51.	1.4	5
60	Novel target NIR-fluorescent polymer for living tumor cell imaging. Polymer Chemistry, 2019, 10, 77-85.	1.9	5
61	Anti-biofouling therapeutic nanoparticles with removable shell and highly efficient internalization by cancer cells. Biomaterials Science, 2019, 7, 336-346.	2.6	4
62	Statistics and Dynamics of Polymer Melt in Neutral Diblock Copolymer Single-Crystal Platelets. Journal of Physical Chemistry Letters, 2020, 11, 1081-1086.	2.1	4
63	Preparation, characterization and mechanism study of small size core-shell polymer nanoparticles dissociated from poly(N-isopropylacrylamide) ionic microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 184-191.	2.3	2
64	Short-term urea cycle inhibition in rat liver cells induced by polyethylene glycol. Biomaterials Science, 2018, 6, 2896-2904.	2.6	2
65	Rational Optimization of Tether Binding Length between the Redox Groups and the Polymer Backbone in Electroactive Redox Enzyme Nanocapsules for High-Performance Enzymatic Biofuel Cell. ACS Applied Energy Materials, 2021, 4, 5034-5042.	2.5	2
66	Controlled radical emulsion polymerization of polystyrene. Colloid and Polymer Science, 2013, 291, 2481-2485.	1.0	1
67	Role transition of PNIPAM ionic microgels in dispersion polymerization by changing the monomer type. Polymer, 2019, 175, 171-176.	1.8	0