
Sha Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803276/publications.pdf Version: 2024-02-01

SUA DENC

#	Article	IF	CITATIONS
1	Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging, 2018, 10, 2954-2972.	3.1	82
2	Melatonin Ameliorates Busulfan-Induced Spermatogonial Stem Cell Oxidative Apoptosis in Mouse Testes. Antioxidants and Redox Signaling, 2018, 28, 385-400.	5.4	60
3	Melatonin Relieves Busulfan-Induced Spermatogonial Stem Cell Apoptosis of Mouse Testis by Inhibiting Endoplasmic Reticulum Stress. Cellular Physiology and Biochemistry, 2017, 44, 2407-2421.	1.6	42
4	GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs). PLoS ONE, 2012, 7, e31502.	2.5	40
5	Melatonin attenuates detrimental effects of diabetes on the niche of mouse spermatogonial stem cells by maintaining Leydig cells. Cell Death and Disease, 2018, 9, 968.	6.3	30
6	Melatonin relieves heat-induced spermatocyte apoptosis in mouse testes by inhibition of ATF6 and PERK signaling pathways. Zoological Research, 2021, 42, 514-524.	2.1	25
7	Dmrt1 regulates the immune response by repressing the TLR4 signaling pathway in goat male germline stem cells. Zoological Research, 2021, 42, 14-27.	2.1	24
8	H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway. Journal of Cellular Physiology, 2019, 234, 915-926.	4.1	22
9	Single-cell RNA sequencing reveals atlas of dairy goat testis cells. Zoological Research, 2021, 42, 401-405.	2.1	22
10	Resveratrol controlled the fate of porcine pancreatic stem cells through the Wnt/β-catenin signaling pathway mediated by Sirt1. PLoS ONE, 2017, 12, e0187159.	2.5	20
11	Melatonin alleviates LPSâ€induced endoplasmic reticulum stress and inflammation in spermatogonial stem cells. Journal of Cellular Physiology, 2021, 236, 3536-3551.	4.1	20
12	Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB Journal, 2021, 35, e21664.	0.5	19
13	Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway. Stem Cell Research and Therapy, 2022, 13, 164.	5.5	19
14	miRâ€375 controls porcine pancreatic stem cell fate by targeting 3â€phosphoinositide–dependent protein kinaseâ€1 <i>(Pdk1)</i> . Cell Proliferation, 2016, 49, 395-406.	5.3	17
15	CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-Î ² signaling. Scientific Reports, 2017, 7, 43851.	3.3	16
16	Canonical Wnt signaling pathway contributes to the proliferation and survival in porcine pancreatic stem cells (PSCs). Cell and Tissue Research, 2015, 362, 379-388.	2.9	15
17	BCL2 enhances survival of porcine pluripotent stem cells through promoting FGFR2. Cell Proliferation, 2021, 54, e12932.	5.3	15
18	Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells. Biochemical and Biophysical Research Communications, 2017, 488, 471-476.	2.1	14

Sha Peng

#	Article	IF	CITATIONS
19	Characterization of porcine extraembryonic endoderm cells. Cell Proliferation, 2019, 52, e12591.	5.3	14
20	<i>LIN28A</i> inhibits <i>DUSP</i> family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zoological Research, 2021, 42, 377-388.	2.1	14
21	Gelatin induces trophectoderm differentiation of mouse embryonic stem cells. Cell Biology International, 2011, 35, 587-591.	3.0	12
22	Double sex and mabâ€3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. Journal of Cellular Physiology, 2018, 233, 2537-2548.	4.1	12
23	Therapeutic applications of adipose-derived mesenchymal stem cells on acute liver injury in canines. Research in Veterinary Science, 2019, 126, 233-239.	1.9	12
24	Responses and coping methods of different testicular cell types to heat stress: overview and perspectives. Bioscience Reports, 2021, 41, .	2.4	12
25	Effects of Wnt5a protein on proliferation and apoptosis in JAR choriocarcinoma cells. Molecular Medicine Reports, 2010, 4, 99-104.	2.4	11
26	Autophagy stimulated proliferation of porcine PSCs might be regulated by the canonical Wnt signaling pathway. Biochemical and Biophysical Research Communications, 2016, 479, 537-543.	2.1	11
27	Folic acid promotes proliferation and differentiation of porcine pancreatic stem cells into insulin-secreting cells through canonical Wnt and ERK signaling pathway. Journal of Steroid Biochemistry and Molecular Biology, 2021, 205, 105772.	2.5	11
28	Characterization of female germline stem cells from adult mouse ovaries and the role of rapamycin on them. Cytotechnology, 2018, 70, 843-854.	1.6	10
29	<i>LIN28A</i> activates the transcription of <i>NANOG</i> in dairy goat male germline stem cells. Journal of Cellular Physiology, 2019, 234, 8113-8121.	4.1	10
30	Eif2s3y regulates the proliferation of spermatogonial stem cells via Wnt6/ <beta>-catenin signaling pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118790.</beta>	4.1	9
31	<scp>CD</scp> 49f promotes proliferation of male dairy goat germline stem cells. Cell Proliferation, 2016, 49, 27-35.	5.3	8
32	SerpinB1 promotes the proliferation of porcine pancreatic stem cells through the STAT3 signaling pathway. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105537.	2.5	7
33	Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs. Research in Veterinary Science, 2021, 136, 39-50.	1.9	7
34	Melatonin Promotes the Therapeutic Effect of Mesenchymal Stem Cells on Type 2 Diabetes Mellitus by Regulating TGF-β Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 722365.	3.7	7
35	Nrf2 activation mediates the protection of mouse Sertoli Cells damage under acute heat stress conditions. Theriogenology, 2022, 177, 183-194.	2.1	7
36	Conophylline Promotes the Proliferation of Immortalized Mesenchymal Stem Cells Derived from Fetal Porcine Pancreas (iPMSCs). Journal of Integrative Agriculture, 2013, 12, 678-686.	3.5	5

Sha Peng

#	Article	IF	CITATIONS
37	Eif2s3y Promotes the Proliferation of Spermatogonial Stem Cells by Activating ERK Signaling. Stem Cells International, 2021, 2021, 1-18.	2.5	4
38	AXIN2 Reduces the Survival of Porcine Induced Pluripotent Stem Cells (piPSCs). International Journal of Molecular Sciences, 2021, 22, 12954.	4.1	4
39	Mir-34c affects the proliferation and pluripotency of porcine induced pluripotent stem cell (piPSC)-like cells by targeting c-Myc. Cells and Development, 2021, 166, 203665.	1.5	3
40	Placenta-Specific miR-125b Overexpression Leads to Increased Rates of Pregnancy Loss in Mice. International Journal of Molecular Sciences, 2022, 23, 943.	4.1	3