David A Weitz

List of Publications by Citations

Source: https://exaly.com/author-pdf/803260/david-a-weitz-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

426 papers

52,451 citations

112 h-index 223 g-index

461 ext. papers

60,539 ext. citations

10.6 avg, IF

7.81 L-index

#	Paper	IF	Citations
426	Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. <i>Cell</i> , 2015 , 161, 1202-1214	56.2	3873
425	Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. <i>Cell</i> , 2015 , 161, 1187	-152021	1983
424	Colloidosomes: selectively permeable capsules composed of colloidal particles. <i>Science</i> , 2002 , 298, 100	6 39 3.3	1769
423	Monodisperse double emulsions generated from a microcapillary device. <i>Science</i> , 2005 , 308, 537-41	33.3	1687
422	Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. <i>Science</i> , 2000 , 287, 627-31	33.3	1470
421	Elastic behavior of cross-linked and bundled actin networks. <i>Science</i> , 2004 , 304, 1301-5	33.3	933
420	Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. <i>Advanced Functional Materials</i> , 2008 , 18, 1097-1104	15.6	927
419	Geometrically mediated breakup of drops in microfluidic devices. <i>Physical Review Letters</i> , 2004 , 92, 054	5 1 9.34	859
418	Single-cell analysis and sorting using droplet-based microfluidics. <i>Nature Protocols</i> , 2013 , 8, 870-91	18.8	834
417	Real-space imaging of nucleation and growth in colloidal crystallization. <i>Science</i> , 2001 , 292, 258-62	33.3	831
416	Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 4004-9	11.5	817
415	Physical forces during collective cell migration. <i>Nature Physics</i> , 2009 , 5, 426-430	16.2	760
414	Droplet microfluidics for high-throughput biological assays. <i>Lab on A Chip</i> , 2012 , 12, 2146-55	7.2	705
413	Gelation of particles with short-range attraction. <i>Nature</i> , 2008 , 453, 499-503	50.4	700
412	Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. <i>Lab on A Chip</i> , 2009 , 9, 1850-8	7.2	648
411	Dripping to jetting transitions in coflowing liquid streams. <i>Physical Review Letters</i> , 2007 , 99, 094502	7.4	621
410	Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. <i>Chemistry and Biology</i> , 2008 , 15, 427-37		555

(2010-2007)

409	Controllable monodisperse multiple emulsions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8970-4	16.4	552
408	Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. <i>Nature Biotechnology</i> , 2015 , 33, 1165-72	44.5	551
407	Designer emulsions using microfluidics. <i>Materials Today</i> , 2008 , 11, 18-27	21.8	544
406	Electric control of droplets in microfluidic devices. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2556-60	16.4	540
405	Massively parallel single-nucleus RNA-seq with DroNc-seq. <i>Nature Methods</i> , 2017 , 14, 955-958	21.6	525
404	Biocompatible surfactants for water-in-fluorocarbon emulsions. <i>Lab on A Chip</i> , 2008 , 8, 1632-9	7.2	508
403	Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. <i>Langmuir</i> , 2000 , 16, 347-	-3.≨1	508
402	Two-point microrheology of inhomogeneous soft materials. <i>Physical Review Letters</i> , 2000 , 85, 888-91	7.4	507
401	Structural rearrangements that govern flow in colloidal glasses. <i>Science</i> , 2007 , 318, 1895-9	33.3	437
400	Drop-based microfluidic devices for encapsulation of single cells. <i>Lab on A Chip</i> , 2008 , 8, 1110-5	7.2	409
399	Production of Unilamellar Vesicles Using an Inverted Emulsion. <i>Langmuir</i> , 2003 , 19, 2870-2879	4	402
398	Controlled encapsulation of single-cells into monodisperse picolitre drops. <i>Lab on A Chip</i> , 2008 , 8, 1262	- 4 y.2	386
397	Synthesis of nonspherical colloidal particles with anisotropic properties. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14374-7	16.4	374
396	Engineering asymmetric vesicles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 10718-21	11.5	358
395	The cell as a material. Current Opinion in Cell Biology, 2007, 19, 101-7	9	353
394	Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9543-9	16.4	352
393	Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. <i>Applied Physics Letters</i> , 2006 , 88, 024104	3.4	346
392	High-throughput injection with microfluidics using picoinjectors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19163-6	11.5	344

391	Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. <i>Cell</i> , 2014 , 158, 822-832	56.2	339
390	Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. <i>Lab on A Chip</i> , 2012 , 12, 2135-45	7.2	292
389	Scaling of the viscoelasticity of weakly attractive particles. <i>Physical Review Letters</i> , 2000 , 85, 449-52	7.4	292
388	Double Emulsion-Templated Nanoparticle Colloidosomes with Selective Permeability. <i>Advanced Materials</i> , 2008 , 20, 3498-3503	24	280
387	Surface acoustic wave actuated cell sorting (SAWACS). Lab on A Chip, 2010, 10, 789-94	7.2	269
386	Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics. MRS Bulletin, 2007, 32, 702-708	3.2	265
385	Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. <i>Lab on A Chip</i> , 2009 , 9, 2625-7	7.2	258
384	Quantifying cell-generated mechanical forces within living embryonic tissues. <i>Nature Methods</i> , 2014 , 11, 183-9	21.6	257
383	Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1819-22	16.4	257
382	Charge stabilization in nonpolar solvents. <i>Langmuir</i> , 2005 , 21, 4881-7	4	252
381	Microfluidic fabrication of microparticles for biomedical applications. <i>Chemical Society Reviews</i> , 2018 , 47, 5646-5683	58.5	251
		<i>J</i> e. <i>J</i>	
380	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. <i>Nature Biotechnology</i> , 2014 , 32, 473-8	44.5	247
380 379	Microfluidic high-throughput culturing of single cells for selection based on extracellular		247
	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. <i>Nature Biotechnology</i> , 2014 , 32, 473-8	44.5	·
379	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. <i>Nature Biotechnology</i> , 2014 , 32, 473-8 Colloid Surfactants for Emulsion Stabilization. <i>Advanced Materials</i> , 2008 , 20, 3239-3243 Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. <i>Applied</i>	44.5	246
379 378	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. <i>Nature Biotechnology</i> , 2014 , 32, 473-8 Colloid Surfactants for Emulsion Stabilization. <i>Advanced Materials</i> , 2008 , 20, 3239-3243 Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. <i>Applied Physics Letters</i> , 2006 , 88, 264105	44·5 24 3·4	246 241
379 378 377	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. <i>Nature Biotechnology</i> , 2014 , 32, 473-8 Colloid Surfactants for Emulsion Stabilization. <i>Advanced Materials</i> , 2008 , 20, 3239-3243 Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. <i>Applied Physics Letters</i> , 2006 , 88, 264105 High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. <i>Small</i> , 2009 , 5, 2030-2 Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. <i>Langmuir</i> , 2006 ,	44·5 24 3·4	246 241 240

(2012-2016)

373	Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. <i>Advanced Functional Materials</i> , 2016 , 26, 2809-2819	15.6	222
372	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. <i>Nature Communications</i> , 2016 , 7, 11589	17.4	220
371	Multicompartment polymersomes from double emulsions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1648-51	16.4	218
370	Stress controls the mechanics of collagen networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9573-8	11.5	216
369	Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. <i>Journal of Biological Chemistry</i> , 2013 , 288, 8610-8618	5.4	216
368	Cell volume change through water efflux impacts cell stiffness and stem cell fate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8618-E8627	11.5	215
367	Microfluidic generation of multifunctional quantum dot barcode particles. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8790-3	16.4	214
366	Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1628-33	10.1	208
365	Three-dimensional confocal microscopy of colloids. <i>Applied Optics</i> , 2001 , 40, 4152-9	1.7	206
364	Droplet microfluidics: A tool for biology, chemistry and nanotechnology. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 82, 118-125	14.6	206
363	High throughput production of single core double emulsions in a parallelized microfluidic device. <i>Lab on A Chip</i> , 2012 , 12, 802-7	7.2	205
362	Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. <i>Advanced Materials</i> , 2017 , 29, 1702616	24	204
361	Uniform Nonspherical Colloidal Particles with Tunable Shapes. Advanced Materials, 2007, 19, 2005-2009	24	203
360	Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. <i>Lab on A Chip</i> , 2014 , 14, 3710-8	7.2	201
359	Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. <i>Nature Materials</i> , 2017 , 16, 236-243	27	199
358	Multiple polymersomes for programmed release of multiple components. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15165-71	16.4	199
357	Scaling by shrinking: empowering single-cell @micsQwith microfluidic devices. <i>Nature Reviews Genetics</i> , 2017 , 18, 345-361	30.1	198
356	High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. <i>Lab on A Chip</i> , 2012 , 12, 2881-7	7.2	193

355	Double-emulsion drops with ultra-thin shells for capsule templates. Lab on A Chip, 2011, 11, 3162-6	7.2	193
354	Janus particles templated from double emulsion droplets generated using microfluidics. <i>Langmuir</i> , 2009 , 25, 4320-3	4	192
353	Droplet microfluidics for fabrication of non-spherical particles. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 108-18	4.8	192
352	Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10845-50	11.5	191
351	Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4983-9	16.4	186
350	Novel defect structures in nematic liquid crystal shells. <i>Physical Review Letters</i> , 2007 , 99, 157801	7.4	185
349	Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy. <i>Science</i> , 2015 , 349, 290-5	33.3	183
348	Fluids of clusters in attractive colloids. <i>Physical Review Letters</i> , 2006 , 96, 028306	7.4	183
347	The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. <i>Biophysical Journal</i> , 2013 , 105, 1562-8	2.9	182
346	25th anniversary article: double emulsion templated solid microcapsules: mechanics and controlled release. <i>Advanced Materials</i> , 2014 , 26, 2205-18	24	180
345	Colloidal Particles: Crystals, Glasses, and Gels. Annual Review of Condensed Matter Physics, 2013, 4, 217-	283 7	179
344	Controllable microfluidic production of multicomponent multiple emulsions. <i>Lab on A Chip</i> , 2011 , 11, 1587-92	7.2	171
343	Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9636-41	11.5	169
342	Smart microgel capsules from macromolecular precursors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6606-9	16.4	160
341	Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. <i>Soft Matter</i> , 2008 , 4, 2303	3.6	159
340	Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6416-20	16.4	145
339	Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets. <i>Advanced Materials</i> , 2009 , 21, 1949-1953	24	143
338	Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7933-7	16.4	142

(2014-2006)

337	Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions. <i>Langmuir</i> , 2006 , 22, 4457-61	4	140	
336	Scaling of F-actin network rheology to probe single filament elasticity and dynamics. <i>Physical Review Letters</i> , 2004 , 93, 188102	7.4	140	
335	One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. <i>Advanced Materials</i> , 2013 , 25, 2536-41	24	137	
334	Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. Journal of the American Chemical Society, 2011 , 133, 5516-24	16.4	135	
333	Beating Poisson encapsulation statistics using close-packed ordering. <i>Lab on A Chip</i> , 2009 , 9, 2628-31	7.2	134	
332	Nonequilibrium microtubule fluctuations in a model cytoskeleton. <i>Physical Review Letters</i> , 2008 , 100, 118104	7.4	134	
331	Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet. <i>Lab on A Chip</i> , 2016 , 16, 1346-9	7.2	132	
330	Polymer microcapsules with programmable active release. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7744-50	16.4	132	
329	Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. <i>Nature Communications</i> , 2017 , 8, 2011	17.4	130	
328	Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. <i>Small</i> , 2014 , 10, 950-6	11	130	
327	An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. <i>Cell</i> , 2017 , 168, 1135-1148.e12	56.2	127	
326	Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. <i>Nature Communications</i> , 2014 , 5, 3068	17.4	126	
325	Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. <i>ISME Journal</i> , 2016 , 10, 427-36	11.9	125	
324	MAFG-driven astrocytes promote CNS inflammation. <i>Nature</i> , 2020 , 578, 593-599	50.4	125	
323	Robust scalable high throughput production of monodisperse drops. <i>Lab on A Chip</i> , 2016 , 16, 4163-4177	27.2	125	
322	Photo- and thermoresponsive polymersomes for triggered release. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12499-503	16.4	124	
321	Monodisperse Thermoresponsive Microgels with Tunable Volume-Phase Transition Kinetics. <i>Advanced Functional Materials</i> , 2007 , 17, 3499-3504	15.6	124	
320	Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch. <i>Advanced Optical Materials</i> , 2014 , 2, 845-848	8.1	116	

319	Microfluidic melt emulsification for encapsulation and release of actives. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2010 , 2, 3411-6	9.5	116
318	Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. <i>Cell</i> , 2014 , 158, 1083-1093	56.2	115
317	Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. <i>Current Opinion in Cell Biology</i> , 2015 , 32, 82-91	9	114
316	PHYSICS. Packing in the spheres. <i>Science</i> , 2004 , 303, 968-9	33.3	114
315	Delayed buckling and guided folding of inhomogeneous capsules. <i>Physical Review Letters</i> , 2012 , 109, 134302	7.4	112
314	Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. <i>Physical Review Letters</i> , 2013 , 111, 064501	7.4	110
313	Single step emulsification for the generation of multi-component double emulsions. <i>Soft Matter</i> , 2012 , 8, 10719	3.6	110
312	The micromechanics of three-dimensional collagen-I gels. <i>Complexity</i> , 2011 , 16, 22-28	1.6	110
311	Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free Design. <i>Advanced Materials</i> , 2015 , 27, 5132-40	24	107
310	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. <i>Nano Letters</i> , 2017 , 17, 606-614	11.5	106
309	Geometric constraints during epithelial jamming. <i>Nature Physics</i> , 2018 , 14, 613-620	16.2	106
308	One-step emulsification of multiple concentric shells with capillary microfluidic devices. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8731-4	16.4	105
307	Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. <i>Advanced Materials</i> , 2010 , 22, 4998-5002	24	105
306	An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1123-1128	11.5	104
305	Mechanical Properties of the Cytoskeleton and Cells. <i>Cold Spring Harbor Perspectives in Biology</i> , 2017 , 9,	10.2	103
304	Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. <i>AICHE Journal</i> , 2013 , 59, 1022-1029	3.6	103
303	Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. <i>Small</i> , 2010 , 6, 807-10	11	103
302	A model for velocity fluctuations in sedimentation. <i>Journal of Fluid Mechanics</i> , 2004 , 501, 71-104	3.7	103

(2010-2016)

301	Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	101
300	Axial and lateral particle ordering in finite Reynolds number channel flows. <i>Physics of Fluids</i> , 2010 , 22, 081703	4.4	99
299	Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. <i>Lab on A Chip</i> , 2008 , 8, 2157-60	7.2	99
298	NANOPARTICLES. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. <i>Science</i> , 2015 , 349, 956-60	33.3	98
297	Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. <i>Soft Matter</i> , 2012 , 8, 156-164	3.6	98
296	Microfluidic sorting with high-speed single-layer membrane valves. <i>Applied Physics Letters</i> , 2010 , 96, 203509	3.4	98
295	Patterning microfluidic device wettability using flow confinement. <i>Lab on A Chip</i> , 2010 , 10, 1774-6	7.2	98
294	Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. <i>Advanced Functional Materials</i> , 2015 , 25, 3330-33	340 ^{5.6}	97
293	Protein microgels from amyloid fibril networks. ACS Nano, 2015 , 9, 43-51	16.7	94
292	Impact of inlet channel geometry on microfluidic drop formation. <i>Physical Review E</i> , 2009 , 80, 026310	2.4	93
291	One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. <i>Lab on A Chip</i> , 2016 , 16, 1549-55	7.2	91
290	Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium. <i>Physics of Fluids</i> , 2014 , 26, 022002	4.4	89
289	Viscoelastic Properties of Microtubule Networks. <i>Macromolecules</i> , 2007 , 40, 7714-7720	5.5	89
288	A new device for the generation of microbubbles. <i>Physics of Fluids</i> , 2004 , 16, 2828-2834	4.4	89
287	Microfluidic Model Porous Media: Fabrication and Applications. <i>Small</i> , 2018 , 14, e1703575	11	88
286	Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. <i>Microfluidics and Nanofluidics</i> , 2012 , 12, 229-235	2.8	88
285	A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. <i>Macromolecular Bioscience</i> , 2012 , 12, 946-51	5.5	86
284	Capillary micromechanics: Measuring the elasticity of microscopic soft objects. <i>Soft Matter</i> , 2010 , 6, 45	50 .6	84

283	Janus microgels produced from functional precursor polymers. <i>Langmuir</i> , 2010 , 26, 14842-7	4	83
282	High-Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600472	2.6	77
281	Drop formation in non-planar microfluidic devices. <i>Lab on A Chip</i> , 2012 , 12, 4263-8	7.2	77
280	Multicompartment Polymersomes from Double Emulsions. <i>Angewandte Chemie</i> , 2011 , 123, 1686-1689	3.6	77
279	Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter, 2010, 6, 4120	3.6	76
278	Alpha-actinin binding kinetics modulate cellular dynamics and force generation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6619-24	11.5	73
277	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 15392-15397	11.5	73
276	Stimuli-Responsive CoreBhell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane. <i>Macromolecules</i> , 2013 , 46, 3309-3313	5.5	72
275	Optically Anisotropic Colloids of Controllable Shape. <i>Advanced Materials</i> , 2005 , 17, 680-684	24	72
274	Structures, stresses, and fluctuations in the delayed failure of colloidal gels. <i>Soft Matter</i> , 2012 , 8, 3657	3.6	71
273	Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4420-6	16.4	71
272	Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy. <i>Physical Review Letters</i> , 2012 , 108, 218103	7.4	71
271	Nonuniversal velocity fluctuations of sedimenting particles. <i>Physical Review Letters</i> , 2002 , 89, 054501	7.4	71
270	One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13470-13474	16.4	71
269	Experimental validation of plugging during drop formation in a T-junction. Lab on A Chip, 2012, 12, 1516	5-721	69
268	Controlled fabrication of polymer microgels by polymer-analogous gelation in droplet microfluidics. <i>Soft Matter</i> , 2010 , 6, 3184	3.6	69
267	Rheology of F-actin solutions determined from thermally driven tracer motion. <i>Journal of Rheology</i> , 2000 , 44, 917-928	4.1	69
266	Optically Reconfigurable Chiral Microspheres of Self-Organized Helical Superstructures with Handedness Inversion. <i>Materials Horizons</i> , 2017 , 4, 1190-1195	14.4	68

265	Rheology and microrheology of a microstructured fluid: The gellan gum case. <i>Journal of Rheology</i> , 2007 , 51, 851-865	4.1	67
264	Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. <i>International Journal of Pharmaceutics</i> , 2014 , 472, 82-7	6.5	66
263	Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy. <i>Physical Review Letters</i> , 2000 , 85, 453-6	7.4	66
262	Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. <i>ACS Nano</i> , 2018 , 12, 11600-11609	16.7	65
261	Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. <i>Small</i> , 2018 , 14, 1702955	11	63
26 0	Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. <i>Macromolecular Bioscience</i> , 2015 , 15, 1641-6	5.5	63
259	Time-dependent strength of colloidal gels. <i>Physical Review Letters</i> , 2005 , 95, 048302	7.4	63
258	Polymersomes containing a hydrogel network for high stability and controlled release. <i>Small</i> , 2013 , 9, 124-31	11	62
257	Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. <i>Physics of Fluids</i> , 2014 , 26, 062004	4.4	61
256	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. <i>Nano Letters</i> , 2017 , 17, 2015-2020	11.5	60
255	Graphene-templated directional growth of an inorganic nanowire. <i>Nature Nanotechnology</i> , 2015 , 10, 423-8	28.7	60
254	Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. <i>Food Chemistry</i> , 2014 , 152, 271-5	8.5	60
253	Direct imaging of repulsive and attractive colloidal glasses. <i>Journal of Chemical Physics</i> , 2006 , 125, 0747	1569	59
252	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7744-7749	11.5	58
251	Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics. <i>Lab on A Chip</i> , 2013 , 13, 4047-52	7.2	58
250	Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. <i>Microfluidics and Nanofluidics</i> , 2013 , 14, 509-514	2.8	57
249	Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. <i>Physical Review E</i> , 2014 , 90, 042305	2.4	57
248	Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants. <i>ACS Nano</i> , 2017 , 11, 11978-11985	16.7	56

247	Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. <i>Lab on A Chip</i> , 2016 , 16, 65-9	7.2	55
246	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. <i>Nano Letters</i> , 2018 , 18, 1448-1453	11.5	54
245	Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. <i>Soft Matter</i> , 2008 , 4, 1388-1392	3.6	54
244	High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. <i>PLoS ONE</i> , 2015 , 10, e0116328	3.7	53
243	Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. <i>Nature Communications</i> , 2019 , 10, 4546	17.4	52
242	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4720-4728	16.4	52
241	Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores. <i>Soft Matter</i> , 2012 , 8, 10636	3.6	52
240	Phase switching of ordered arrays of liquid crystal emulsions. <i>Applied Physics Letters</i> , 2003 , 82, 2610-26	13.4	52
239	Thermally Switched Release from Nanoparticle Colloidosomes. <i>Advanced Functional Materials</i> , 2013 , 23, 5925-5929	15.6	51
238	Short-time self-diffusion of nearly hard spheres at an oilWater interface. <i>Journal of Fluid Mechanics</i> , 2009 , 618, 243-261	3.7	51
237	Control of non-linear elasticity in F-actin networks with microtubules. Soft Matter, 2011, 7, 902-906	3.6	49
236	Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. <i>Lab on A Chip</i> , 2017 , 18, 132-138	7.2	49
235	A high-throughput cellulase screening system based on droplet microfluidics. <i>Biomicrofluidics</i> , 2014 , 8, 041102	3.2	48
234	Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. <i>Advanced Materials</i> , 2016 , 28, 3340-4	24	47
233	Convection-Driven Pull-Down Assays in Nanoliter Droplets Using Scaffolded Aptamers. <i>Analytical Chemistry</i> , 2017 , 89, 3468-3473	7.8	46
232	Tandem emulsification for high-throughput production of double emulsions. <i>Lab on A Chip</i> , 2017 , 17, 936-942	7.2	46
231	Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. <i>Lab on A Chip</i> , 2015 , 15, 3335-40	7.2	46
230	One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie, 2011 , 123, 8890-8893	3.6	46

229	Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	45	
228	Local Pore Size Correlations Determine Flow Distributions in Porous Media. <i>Physical Review Letters</i> , 2017 , 119, 144501	7.4	45	
227	Chemically induced coalescence in droplet-based microfluidics. <i>Lab on A Chip</i> , 2015 , 15, 1140-4	7.2	44	
226	Formation of polymersomes with double bilayers templated by quadruple emulsions. <i>Lab on A Chip</i> , 2013 , 13, 1351-6	7.2	44	
225	Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery. <i>ACS Applied Materials & Damp; Interfaces</i> , 2013 , 5, 12127-34	9.5	44	
224	Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles. <i>ACS Nano</i> , 2015 , 9, 2720-8	16.7	43	
223	Breakup of double emulsions in constrictions. <i>Soft Matter</i> , 2011 , 7, 2345	3.6	43	
222	Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. <i>ACS Nano</i> , 2020 , 14, 9491-9501	16.7	42	
221	Target-locking acquisition with real-time confocal (TARC) microscopy. <i>Optics Express</i> , 2007 , 15, 8702-12	3.3	42	
220	Wetting controls of droplet formation in step emulsification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 9479-9484	11.5	41	
219	Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal Droplets. <i>Angewandte Chemie</i> , 2015 , 127, 2188-2192	3.6	40	
218	Probing nonlinear rheology with inertio-elastic oscillations. <i>Journal of Rheology</i> , 2008 , 52, 1013-1025	4.1	39	
217	Rapid growth of large, defect-free colloidal crystals. Soft Matter, 2013, 9, 320-328	3.6	38	
216	High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. <i>Lab on A Chip</i> , 2018 , 18, 323-334	7.2	38	
215	Functional Microcapsules via Thiol-Ene Photopolymerization in Droplet-Based Microfluidics. <i>ACS Applied Materials & Droplet & </i>	9.5	37	
214	Characterization of niobium point contacts showing Josephson effects in the far infrared. <i>Journal of Applied Physics</i> , 1978 , 49, 4873-4880	2.5	37	
213	Reduced Graphene Oxide Membrane Induced Robust Structural Colors toward Personal Thermal Management. <i>ACS Photonics</i> , 2019 , 6, 116-122	6.3	37	
212	Millimeter-Size Pickering Emulsions Stabilized with Janus Microparticles. <i>Langmuir</i> , 2019 , 35, 4693-4701	4	36	

211	Enhanced encapsulation of actives in self-sealing microcapsules by precipitation in capsule shells. Langmuir, 2011 , 27, 13988-91	4	36
210	Microfluidics-Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling. <i>Small</i> , 2020 , 16, e1903939	11	36
209	Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design. Lab on A Chip, 2017, 17, 405	59 7.4 069	9 35
208	Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks. <i>Lab on A Chip</i> , 2019 , 19, 2089-2095	7.2	35
207	Block-and-break generation of microdroplets with fixed volume. <i>Biomicrofluidics</i> , 2013 , 7, 24108	3.2	35
206	Physical limits to biomechanical sensing in disordered fibre networks. <i>Nature Communications</i> , 2017 , 8, 16096	17.4	35
205	Early development drug formulation on a chip: fabrication of nanoparticles using a microfluidic spray dryer. <i>Lab on A Chip</i> , 2011 , 11, 2362-8	7.2	35
204	Multi-functional micromotor: microfluidic fabrication and water treatment application. <i>Lab on A Chip</i> , 2017 , 17, 4220-4224	7.2	34
203	Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (EACS). <i>Lab on A Chip</i> , 2019 , 19, 2435-2443	7.2	33
202	Microcapsules for Enhanced Cargo Retention and Diversity. <i>Small</i> , 2015 , 11, 2903-9	11	33
201	Drying kinetics driven by the shape of the air/water interface in a capillary channel. <i>European Physical Journal E</i> , 2016 , 39, 23	1.5	33
200	Rapid Patterning of PDMS Microfluidic Device Wettability Using Syringe-Vacuum-Induced Segmented Flow in Nonplanar Geometry. <i>ACS Applied Materials & Device Materials</i>	9.5	32
199	Electrostatics for Exploring the Nature of Water Adsorption on the Laponite Sheets ©urface. Journal of Physical Chemistry B, 2003 , 107, 8946-8952	3.4	32
198	Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 6158-6169	15.6	31
197	Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride. <i>Macromolecules</i> , 2018 , 51, 5798-5805	5.5	31
196	Gas-core triple emulsions for ultrasound triggered release. <i>Soft Matter</i> , 2013 , 9, 38-42	3.6	31
195	Versatile Hydrogel Ensembles with Macroscopic Multidimensions. <i>Advanced Materials</i> , 2018 , 30, e1803	4Z <u>5</u>	31
194	Uncovering the mechanism of trapping and cell orientation during Neisseria gonorrhoeae twitching motility. <i>Biophysical Journal</i> , 2014 , 107, 1523-31	2.9	30

193	Fluorocarbon Oil Reinforced Triple Emulsion Drops. Advanced Materials, 2016, 28, 8425-8430	24	29
192	Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 23616-23622	9.5	28
191	Crystallization and reentrant melting of charged colloids in nonpolar solvents. <i>Physical Review E</i> , 2015 , 91, 030301	2.4	28
190	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. <i>Nature Communications</i> , 2018 , 9, 1899	17.4	28
189	Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. <i>Biomaterials</i> , 2020 , 248, 120014	15.6	27
188	Dynamic Microcapsules with Rapid and Reversible Permeability Switching. <i>Advanced Functional Materials</i> , 2018 , 28, 1803385	15.6	27
187	The microfluidic post-array device: high throughput production of single emulsion drops. <i>Lab on A Chip</i> , 2014 , 14, 705-9	7.2	27
186	Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell Confinement. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1841-8	10.1	27
185	Colloidal gelation of oppositely charged particles. Soft Matter, 2012, 8, 8697	3.6	27
184	Drying regimes in homogeneous porous media from macro- to nanoscale. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	27
183	Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants. <i>Environmental Science: Nano</i> , 2020 , 7, 656-664	7.1	27
182	Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. <i>Biophysical Journal</i> , 2019 , 116, 518-529	2.9	26
181	Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins - the introduction of protein-corona-free polymer nanomedicine. <i>Nanoscale</i> , 2018 , 10, 6194-6204	7.7	26
180	Stimuli-responsive dendronized polymeric hydrogels through Schiff-base chemistry showing remarkable topological effects. <i>Polymer Chemistry</i> , 2018 , 9, 378-387	4.9	26
179	Probing phenotypic growth in expanding Bacillus subtilis biofilms. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 4607-15	5.7	26
178	Functional patterning of PDMS microfluidic devices using integrated chemo-masks. <i>Lab on A Chip</i> , 2010 , 10, 1521-4	7.2	26
177	Niobium point-contact Josephson-junction behavior at 604 GHz. <i>Applied Physics Letters</i> , 1977 , 31, 227-27	2 9 4	26
176	One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. <i>Angewandte Chemie</i> , 2016 , 128, 13668-13672	3.6	26

175	Single-step assembly of asymmetric vesicles. <i>Lab on A Chip</i> , 2019 , 19, 749-756	7.2	25
174	Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics. <i>Journal of Virology</i> , 2015 , 89, 7722-34	6.6	25
173	Nanomechanics of vimentin intermediate filament networks. Soft Matter, 2010, 6, 1910	3.6	25
172	Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability. <i>Langmuir</i> , 2016 , 32, 5350-5	4	25
171	Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. <i>Physical Review Letters</i> , 2017 , 118, 088003	7.4	24
170	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. <i>Computers and Fluids</i> , 2018 , 167, 33-39	2.8	24
169	Fluctuations in the Kinetics of Linear Protein Self-Assembly. <i>Physical Review Letters</i> , 2016 , 116, 258103	7.4	24
168	Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability. <i>ChemPhysChem</i> , 2017 , 18, 1393-1399	3.2	23
167	Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. <i>Acta Biomaterialia</i> , 2020 , 111, 181-196	10.8	23
166	Emergent properties of composite semiflexible biopolymer networks. <i>Bioarchitecture</i> , 2014 , 4, 138-43		23
166 165	Emergent properties of composite semiflexible biopolymer networks. <i>Bioarchitecture</i> , 2014 , 4, 138-43 Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. <i>Lab on A Chip</i> , 2020 , 20, 147-154	7.2	23
	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double	7.2 16.4	23
165	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. <i>Lab on A Chip</i> , 2020 , 20, 147-154 J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug	,	23
165 164	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. <i>Lab on A Chip</i> , 2020 , 20, 147-154 J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20065-20074 Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. <i>Methods in</i>	16.4	23
165 164 163	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. <i>Lab on A Chip</i> , 2020 , 20, 147-154 J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20065-20074 Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. <i>Methods in Enzymology</i> , 2016 , 568, 389-426	16.4	23 23 23
165164163162	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab on A Chip, 2020, 20, 147-154 J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie - International Edition, 2020, 59, 20065-20074 Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods in Enzymology, 2016, 568, 389-426 Stable Ultrathin-Shell Double Emulsions for Controlled Release. ChemPhysChem, 2016, 17, 1553-6 Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps. Physical	16.4 1.7 3.2	2323232323
165164163162161	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab on A Chip, 2020, 20, 147-154 J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie - International Edition, 2020, 59, 20065-20074 Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods in Enzymology, 2016, 568, 389-426 Stable Ultrathin-Shell Double Emulsions for Controlled Release. ChemPhysChem, 2016, 17, 1553-6 Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps. Physical Review Letters, 2018, 120, 028005 Label-free single-cell protein quantification using a drop-based mix-and-read system. Scientific	16.4 1.7 3.2 7.4	23 23 23 23 22

(2018-2021)

157	A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs. <i>SPE Journal</i> , 2021 , 26, 482-497	3.1	22
156	Active Encapsulation in Biocompatible Nanocapsules. <i>Small</i> , 2020 , 16, e2002716	11	21
155	Controlled self-assembly of alginate microgels by rapidly binding molecule pairs. <i>Lab on A Chip</i> , 2017 , 17, 2481-2490	7.2	20
154	Single Extracellular Vesicle Protein Analysis Using Immuno-Droplet Digital Polymerase Chain Reaction Amplification. <i>Advanced Biology</i> , 2020 , 4, e1900307	3.5	20
153	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. <i>Angewandte Chemie</i> , 2020 , 132, 4750-4758	3.6	20
152	Corrugated interfaces in multiphase core-annular flow. <i>Physics of Fluids</i> , 2010 , 22, 082002	4.4	20
151	Like-charged particles at liquid interfaces. <i>Nature</i> , 2003 , 424, 1014-1014	50.4	20
150	A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. <i>Chinese Chemical Letters</i> , 2020 , 31, 249-252	8.1	20
149	Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity. <i>Advanced Functional Materials</i> , 2017 , 27, 1700975	15.6	19
148	Mechanics and dynamics of reconstituted cytoskeletal systems. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2015 , 1853, 3038-42	4.9	19
147	Parallelization of microfluidic flow-focusing devices. <i>Physical Review E</i> , 2017 , 95, 043105	2.4	19
146	Hydrogel micromotors with catalyst-containing liquid core and shell. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 214004	1.8	19
145	Collective generation of milliemulsions by step-emulsification. <i>RSC Advances</i> , 2017 , 7, 14932-14938	3.7	18
144	Nanoparticle-Shelled Catalytic Bubble Micromotor. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901583	4.6	18
143	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800807	4.6	18
142	Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics. <i>ChemBioChem</i> , 2015 , 16, 2167-71	3.8	18
141	Controlling droplet incubation using close-packed plug flow. <i>Biomicrofluidics</i> , 2011 , 5, 24101	3.2	18
140	Elucidating the mechanism of step emulsification. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	18

139	Self-Limited Accumulation of Colloids in Porous Media. <i>Physical Review Letters</i> , 2019 , 123, 158005	7.4	17
138	Spatial propagation of protein polymerization. <i>Physical Review Letters</i> , 2014 , 112, 098101	7.4	17
137	Creation of Faceted Polyhedral Microgels from Compressed Emulsions. Small, 2017, 13, 1701256	11	17
136	Materials science. Unjamming a polymer glass. <i>Science</i> , 2009 , 323, 214-5	33.3	17
135	Polymer Phase Separation in a Microcapsule Shell. <i>Macromolecules</i> , 2017 , 50, 7681-7686	5.5	16
134	Novel nonequilibrium steady states in multiple emulsions. <i>Physics of Fluids</i> , 2020 , 32, 017102	4.4	16
133	Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700664	10.1	16
132	Biocompatible microcapsules with a water core templated from single emulsions. <i>Chinese Chemical Letters</i> , 2017 , 28, 1897-1900	8.1	16
131	Measuring the elastic modulus of microgels using microdrops. Soft Matter, 2012, 8, 10032	3.6	16
130	Microgels and Their Synthesis: An Introduction 2011 , 1-32		16
130	Microgels and Their Synthesis: An Introduction 2011 , 1-32 Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007 , 91, 091119	3.4	16
	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers.	3.4	
129	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, 091119 Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional		16
129	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, 091119 Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Applied Physics Letters, 2006, 88, 121911 Identifying directional persistence in intracellular particle motion using Hidden Markov Models.	3.4	16 16
129 128 127	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, 091119 Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Applied Physics Letters, 2006, 88, 121911 Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Mathematical Biosciences, 2014, 248, 140-5	3.4	16 16 15
129 128 127	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, 091119 Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Applied Physics Letters, 2006, 88, 121911 Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Mathematical Biosciences, 2014, 248, 140-5 Sequencing-Based Protein Analysis of Single Extracellular Vesicles. ACS Nano, 2021, 15, 5631-5638 Direct observation of crystallization and melting with colloids. Proceedings of the National Academy	3·4 3·9 16.7	16 16 15
129 128 127 126	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, 091119 Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Applied Physics Letters, 2006, 88, 121911 Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Mathematical Biosciences, 2014, 248, 140-5 Sequencing-Based Protein Analysis of Single Extracellular Vesicles. ACS Nano, 2021, 15, 5631-5638 Direct observation of crystallization and melting with colloids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1180-1184 Microfluidic fabrication and micromechanics of permeable and impermeable elastomeric	3·4 3·9 16.7	16 16 15 15

121	Velocity fluctuations of initially stratified sedimenting spheres. <i>Physics of Fluids</i> , 2007 , 19, 113304	4.4	14
120	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers 2020 , 2, 153-160		14
119	Rapid isolation of antigen-specific B-cells using droplet microfluidics RSC Advances, 2020, 10, 27006-2	79,1 , 3	14
118	Attractive Pickering Emulsion Gels. <i>Advanced Materials</i> , 2021 , 33, e2102362	24	14
117	Jetting to dripping transition: Critical aspect ratio in step emulsifiers. <i>Physics of Fluids</i> , 2019 , 31, 02170.	3 4.4	14
116	Droplet encapsulation improves accuracy of immune cell cytokine capture assays. <i>Lab on A Chip</i> , 2020 , 20, 1513-1520	7.2	13
115	Effect of Divalent Cations on the Structure and Mechanics of Vimentin Intermediate Filaments. <i>Biophysical Journal</i> , 2020 , 119, 55-64	2.9	13
114	Fluctuations in flow produced by competition between apparent wall slip and dilatancy. <i>Rheologica Acta</i> , 2014 , 53, 333-347	2.3	13
113	Transport of charged colloids in a nonpolar solvent. <i>Soft Matter</i> , 2013 , 9, 5173	3.6	13
112	Dispersing hydrophobic natural colourant Etarotene in shellac particles for enhanced stability and tunable colour. <i>Royal Society Open Science</i> , 2017 , 4, 170919	3.3	13
111	Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13985-8	16.4	13
110	Evolution on the Biophysical Fitness Landscape of an RNA Virus. <i>Molecular Biology and Evolution</i> , 2018 , 35, 2390-2400	8.3	13
109	Controllable Fabrication of Inhomogeneous Microcapsules for Triggered Release by Osmotic Pressure. <i>Small</i> , 2019 , 15, e1903087	11	12
108	Compression Generated by a 3D Supracellular Actomyosin Cortex Promotes Embryonic Stem Cell Colony Growth and Expression of Nanog and Oct4. <i>Cell Systems</i> , 2019 , 9, 214-220.e5	10.6	12
107	The microfluidic nebulator: production of sub-micrometer sized airborne drops. <i>Lab on A Chip</i> , 2017 , 17, 1475-1480	7.2	11
106	Efficient extraction of oil from droplet microfluidic emulsions. <i>Biomicrofluidics</i> , 2017 , 11, 034111	3.2	11
105	Stable, Fluorescent Polymethylmethacrylate Particles for the Long-Term Observation of Slow Colloidal Dynamics. <i>Langmuir</i> , 2017 , 33, 6382-6389	4	11
104	Anisotropic elasticity of experimental colloidal Wigner crystals. <i>Physical Review E</i> , 2015 , 91, 032310	2.4	11

103	Stimuli responsive Janus microgels with convertible hydrophilicity for controlled emulsion destabilization. <i>Soft Matter</i> , 2020 , 16, 3613-3620	3.6	11
102	Absorbent-Adsorbates: Large Amphiphilic Janus Microgels as Droplet Stabilizers. <i>ACS Applied Materials & Droplet Stabilizers</i> , 2020, 12, 33439-33446	9.5	11
101	Rheology of Industrially Relevant Microgels 2011 , 327-353		11
100	Origin of anomalous polymer-induced fluid displacement in porous media. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	11
99	The vortex-driven dynamics of droplets within droplets. <i>Nature Communications</i> , 2021 , 12, 82	17.4	11
98	Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly. <i>ACS Nano</i> , 2021 , 15, 3490-3499	16.7	11
97	A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon. <i>Chemical Communications</i> , 2019 , 55, 7358-7361	5.8	10
96	Microfluidic Synthesis of Multimode [email[protected] Nanomedicines and Their Cytotoxicity and Anti-Tumor Effects. <i>Chemistry of Materials</i> , 2020 , 32, 5044-5056	9.6	10
95	Dissolvable Polyacrylamide Beads for High-Throughput Droplet DNA Barcoding. <i>Advanced Science</i> , 2020 , 7, 1903463	13.6	10
94	Triple Junction at the Triple Point Resolved on the Individual Particle Level. <i>Physical Review Letters</i> , 2017 , 119, 128001	7.4	10
93	Multicompartment polymersome gel for encapsulation. Soft Matter, 2011, 7, 8762	3.6	10
92	Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids. <i>Angewandte Chemie</i> , 2010 , 122, 7914-7918	3.6	10
91	Velocity fluctuations in a low-Reynolds-number fluidized bed. <i>Journal of Fluid Mechanics</i> , 2008 , 596, 467	′- 47 5	10
90	The soft framework of the cellular machine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 1105-6	11.5	10
89	Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. <i>Nature Communications</i> , 2021 , 12, 6600	17.4	10
88	Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels. <i>Lab on A Chip</i> , 2019 , 19, 4064-4070	7.2	10
87	Diverse Particle Carriers Prepared by Co-Precipitation and Phase Separation: Formation and Applications. <i>ChemPlusChem</i> , 2021 , 86, 49-58	2.8	10
86	Preparation of monodisperse hybrid gel particles with various morphologies via flow rate and temperature control. <i>Soft Matter</i> , 2019 , 15, 6934-6937	3.6	9

85	Rolling particle lithography by soft polymer microparticles. Soft Matter, 2013, 9, 2206	3.6	9
84	Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. <i>Lab on A Chip</i> , 2020 , 20, 3914-3921	7.2	9
83	Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. <i>Particuology</i> , 2021 , 64, 153-153	2.8	9
82	Initial growth dynamics of 10 nm nanobubbles in the graphene liquid cell. <i>Applied Nanoscience</i> (Switzerland), 2021 , 11, 1-7	3.3	9
81	Rapid Production of Submicron Drug Substance Particles by Supersonic Spray Drying. <i>Crystal Growth and Design</i> , 2017 , 17, 2046-2053	3.5	8
80	An outlook on microfluidics: the promise and the challenge Lab on A Chip, 2022,	7.2	8
79	A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders. <i>Scientific Reports</i> , 2016 , 6, 22575	4.9	8
78	Hydrogel Microcapsules with a Thin Oil Layer: Smart Triggered Release via Diverse Stimuli. <i>Advanced Functional Materials</i> , 2021 , 31, 2009553	15.6	8
77	One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 608-13	11.5	7
76	Microgels in Drug Delivery 2011 , 375-405		7
75	Patterned Colloidal Coating Using Adhesive Emulsions. <i>Langmuir</i> , 2001 , 17, 2275-2277	4	7
74			
, ,	J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. <i>Angewandte Chemie</i> , 2020 , 132, 20240-20249	3.6	7
73		3.6 2.8	7
	Loading. <i>Angewandte Chemie</i> , 2020 , 132, 20240-20249 Optimization and development of a universal flow-based microfluidic gradient generator.		<u> </u>
73	Optimization and development of a universal flow-based microfluidic gradient generator. Microfluidics and Nanofluidics, 2016, 20, 1 Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Applied	2.8	7
73 72	Optimization and development of a universal flow-based microfluidic gradient generator. Microfluidics and Nanofluidics, 2016, 20, 1 Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Applied Materials & Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet. Small, 2021,	2.8 9.5	7
73 72 71	Optimization and development of a universal flow-based microfluidic gradient generator. Microfluidics and Nanofluidics, 2016, 20, 1 Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Applied Materials & Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet. Small, 2021, 17, e2102579 Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In[Vitro]	2.8 9.5	7 7 7

67	Core-Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media. <i>ACS Applied Materials & Discourt Materials & Discourt Media Materials & Discourt Media Materials & Discourt Media Materials & Discourt Media Media Materials & Discourt Media Me</i>	9.5	6
66	Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields. <i>Journal of the Acoustical Society of America</i> , 2016 , 140, 1992	2.2	6
65	HoleBhell Microparticles from Controllably Evolved Double Emulsions. <i>Angewandte Chemie</i> , 2013 , 125, 8242-8245	3.6	6
64	Swelling Thermodynamics of Microgel Particles 2011 , 71-116		6
63	Rock damage evolution model of pulsating fracturing based on energy evolution theory. <i>Energy Science and Engineering</i> , 2020 , 8, 1050-1067	3.4	6
62	Universal Statistical Laws for the Velocities of Collective Migrating Cells. Advanced Biology, 2020, 4, e20	0,0965	6
61	Implications of Quenching-to-Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye-Labeled Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15426-15435	16.4	6
60	Programmable Engineering of DNA-AuNP Encoders Integrated Multimodal Coupled Analysis for Precision Discrimination of Multiple Metal Ions. <i>Nano Letters</i> , 2021 , 21, 2141-2148	11.5	6
59	A High-Throughput Screening System Based on Droplet Microfluidics for Glucose Oxidase Gene Libraries. <i>Molecules</i> , 2020 , 25,	4.8	5
58	Melting and Geometric Frustration in Temperature-Sensitive Colloids 2011 , 229-281		5
57	Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release <i>RSC Advances</i> , 2021 , 11, 37814-37823	3.7	5
56	Anomalous mechanics of Zn-modified fibrin networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
55	Nonlinear Phenomena in Microfluidics Chemical Reviews, 2022,	68.1	5
54	Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2115217119	11.5	5
53	Imaging grain boundary grooves in hard-sphere colloidal bicrystals. <i>Physical Review E</i> , 2016 , 94, 042604	2.4	4
52	Composition and degradation of turbine oil sludge. <i>Journal of Thermal Analysis and Calorimetry</i> , 2016 , 125, 155-162	4.1	4
51	Expansion and rupture of charged microcapsules. <i>Materials Horizons</i> , 2014 , 1, 92-95	14.4	4
50	One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position (Adv. Mater. 18/2013). <i>Advanced Materials</i> , 2013 , 25, 2535-2535	24	4

49	Determination of Microgel Structure by Small-Angle Neutron Scattering 2011 , 117-132		4
48	Structure and Thermodynamics of Ionic Microgels 2011 , 163-193		4
47	Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. <i>Exploration</i> , 2021 , 1, 20210036		4
46	Water-Triggered Rapid Release of Biocide with Enhanced Antimicrobial Activity in Biodiesel. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900156	3.9	3
45	Robust mechanobiological behavior emerges in heterogeneous myosin systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8147-E8154	11.5	3
44	Multistage Transformation and Lattice Fluctuation at AgCl-Ag Interface. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5853-5860	6.4	3
43	Digital Microfluidic Thermal Control Chip-Based Multichannel Immunosensor for Noninvasively Detecting Acute Myocardial Infarction. <i>Analytical Chemistry</i> , 2021 , 93, 15033-15041	7.8	3
42	Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity <i>ACS Macro Letters</i> , 2021 , 10, 116-121	6.6	3
41	DNAzyme-powered nucleic acid release from solid supports. <i>Chemical Communications</i> , 2020 , 56, 647-6.	59 .8	3
40	Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25225-25229	11.5	3
39	Tunable Nanochannels Connected in Series for Dynamic Control of Multiple Concentration-Polarization Layers and Preconcentrated Molecule Plugs. <i>Nano Letters</i> , 2020 , 20, 8524-8	5 ¹¹ 3 ⁵	3
38	Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin. <i>Scientific Reports</i> , 2021 , 11, 16279	4.9	3
37	Microchannel measurements of viscosity for both gases and liquids. <i>Lab on A Chip</i> , 2021 , 21, 2805-2811	7.2	3
36	Reply to the @ omment on "Robust scalable high throughput production of monodisperse drops"Q by M. Nakajima, Lab Chip, 2017, 17, DOI: 10.1039/C7LC00181A. <i>Lab on A Chip</i> , 2017 , 17, 2332-2333	7.2	2
35	Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. <i>Angewandte Chemie</i> , 2015 , 127, 14191-14194	3.6	2
34	Microshells: Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch (Advanced Optical Materials 9/2014). <i>Advanced Optical Materials</i> , 2014 , 2, 904-904	8.1	2
33	Yielding, Flow, and Slip in Microgel Suspensions: From Microstructure to Macroscopic Rheology 2011 , 283-309		2
32	Exploiting the Optical Properties of Microgels and Hydrogels as Microlenses and Photonic Crystals in Sensing Applications 2011 , 355-374		2

31	Microgels for Oil Recovery 2011 , 407-422		2
30	Polymerization Kinetics of Microgel Particles 2011 , 33-51		2
29	Propagation and adsorption of nanoparticles in porous medium as traveling waves. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
28	Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays. <i>Soft Matter</i> , 2021 , 17, 7260-7267	3.6	2
27	Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection. <i>Journal of Virology</i> , 2021 , 95,	6.6	2
26	Macroscopic Self-Assembly: Versatile Hydrogel Ensembles with Macroscopic Multidimensions (Adv. Mater. 52/2018). <i>Advanced Materials</i> , 2018 , 30, 1870400	24	2
25	The correlation between cell and nucleus size is explained by an eukaryotic cell growth model <i>PLoS Computational Biology</i> , 2022 , 18, e1009400	5	2
24	Self-Healing Materials: Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks (Adv. Mater. 38/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
23	Axial Confocal Tomography of Capillary-Contained Colloidal Structures. <i>Langmuir</i> , 2017 , 33, 13343-133	349	1
22	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly 2015 ,		1
21	Elasticity of Soft Particles and Colloids near the Jamming Threshold 2011 , 195-206		1
20	Crystallization of Microgel Spheres 2011 , 207-228		1
19	Interactions and Colloid Stability of Microgel Particles 2011 , 133-162		1
18	Droplet Based Microfluidics for Synthesis of Mesoporous Silica Microspheres. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1272, 1		1
17	New Functional Microgels from Microfluidics 2011 , 53-70		1
16	Spontaneous Creation of Anisotropic Polymer Crystals with Orientation-Sensitive Birefringence in Liquid Drops. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 3912-3918	9.5	1
15	Implications of Quenching-to-Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye-Labeled Nanoparticles. <i>Angewandte Chemie</i> , 2021 , 133, 15554-15563	3.6	1
14	Determining the lipid specificity of insoluble protein transmembrane domains. <i>Lab on A Chip</i> , 2018 , 18, 3561-3569	7.2	1

LIST OF PUBLICATIONS

13	Dynamic Speckle Holography. <i>Physical Review Letters</i> , 2021 , 127, 088003	7.4	1
12	Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size <i>Acta Biomaterialia</i> , 2022 , 141, 178-178	10.8	О
11	High-fidelity transfer of area-selective atomic layer deposition grown HfO2 through DNA origami-assisted nanolithography. <i>Nano Research</i> ,1	10	O
10	Micro-ecology restoration of colonic inflammation by in-Situ oral delivery of antibody-laden hydrogel microcapsules <i>Bioactive Materials</i> , 2022 , 15, 305-315	16.7	0
9	Back Cover: Macromol. Biosci. 12/2015. <i>Macromolecular Bioscience</i> , 2015 , 15, 1764-1764	5.5	
8	Titelbild: HoleBhell Microparticles from Controllably Evolved Double Emulsions (Angew. Chem. 31/2013). <i>Angewandte Chemie</i> , 2013 , 125, 8043-8043	3.6	
7	Mechanics of Single Microgel Particles 2011 , 311-325		
6	Applications of Biopolymer Microgels 2011 , 423-450		
5	Microfluidics: Drug Dissolution Chip (DDC): A Microfluidic Approach for Drug Release (Small 21/2011). <i>Small</i> , 2011 , 7, 2958-2958	11	
4	Structural basis of filamin A-filGAP interaction and its impairment in congenital anomalies associated with filamin A mutations. <i>FASEB Journal</i> , 2009 , 23, 704.1	0.9	
3	Hydrogel Microcapsules: Hydrogel Microcapsules with a Thin Oil Layer: Smart Triggered Release via Diverse Stimuli (Adv. Funct. Mater. 18/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170124	15.6	
2	Drug Co-Delivery: Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications (Adv. Funct. Mater. 34/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6138-6138	15.6	
1	Correlation Tracking: Using simulations to interpolate highly correlated particle tracks <i>Physical Review E</i> , 2022 , 105, 044608	2.4	