Diana Diaz-Dussan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032566/publications.pdf

Version: 2024-02-01

623574 580701 25 706 14 25 citations g-index h-index papers 29 29 29 799 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Molecular Pharmaceutics, 2022, 19, 1766-1777.	2.3	11
2	Cellular mechanism of action of 2-nitroimidazoles as hypoxia-selective therapeutic agents. Redox Biology, 2022, 52, 102300.	3.9	9
3	Glycopolymer–Cell-Penetrating Peptide (CPP) Conjugates for Efficient Epidermal Growth Factor Receptor (EGFR) Silencing. ACS Macro Letters, 2022, 11, 580-587.	2.3	7
4	Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties. Biomacromolecules, 2022, 23, 2552-2561.	2.6	7
5	Dual-Cross-Linked Network Hydrogels with Multiresponsive, Self-Healing, and Shear Strengthening Properties. Biomacromolecules, 2021, 22, 800-810.	2.6	29
6	Glyco-Nanomedicines and Their Applications in Cancer Treatment. , 2021, , 566-585.		1
7	Multi-responsive, injectable, and self-healing hydrogels based on benzoxaborole–tannic acid complexation. Polymer Chemistry, 2021, 12, 5623-5630.	1.9	8
8	Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS Applied Materials & (Interfaces), 2021, 13, 9006-9014.	4.0	65
9	Dual Cross-Linked Hydrogels with Injectable, Self-Healing, and Antibacterial Properties Based on the Chemical and Physical Cross-Linking. Biomacromolecules, 2021, 22, 1685-1694.	2.6	35
10	Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano, 2021, 15, 9913-9923.	7.3	57
11	Identification of proteins and cellular pathways targeted by 2-nitroimidazole hypoxic cytotoxins. Redox Biology, 2021, 41, 101905.	3.9	5
12	Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules, 2020, 21, 1264-1273.	2.6	25
13	Oncogenic Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma Mediated by Dynamic Sugar-Benzoxaborole Polyplexes. ACS Macro Letters, 2020, 9, 1464-1470.	2.3	7
14	Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions. Chemistry of Materials, 2020, 32, 10545-10555.	3.2	30
15	Facile Preparation of Macromolecular Prodrugs for Hypoxia-Specific Chemotherapy. ACS Macro Letters, 2020, 9, 1687-1692.	2.3	9
16	Preparation and Characterization of Thermoresponsive PEG-Based Injectable Hydrogels and Their Application for 3D Cell Culture. Biomacromolecules, 2020, 21, 1254-1263.	2.6	18
17	In Situ Forming, Dual-Crosslink Network, Self-Healing Hydrogel Enabled by a Bioorthogonal Nopoldiol–Benzoxaborolate Click Reaction with a Wide pH Range. Chemistry of Materials, 2019, 31, 4092-4102.	3.2	64
18	Hydroxyl-Rich PGMA-Based Cationic Glycopolymers for Intracellular siRNA Delivery: Biocompatibility and Effect of Sugar Decoration Degree. Biomacromolecules, 2019, 20, 2068-2074.	2.6	24

#	ARTICLE	IF	CITATION
19	Tumor Microenvironment-Regulated Redox Responsive Cationic Galactose-Based Hyperbranched Polymers for siRNA Delivery. Bioconjugate Chemistry, 2019, 30, 405-412.	1.8	22
20	Well-Defined Cationic $\langle i \rangle N \langle i \rangle$ -[3-(Dimethylamino)propyl]methacrylamide Hydrochloride-Based (Co)polymers for siRNA Delivery. Biomacromolecules, 2018, 19, 209-221.	2.6	30
21	Achieving Safe and Highly Efficient Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma by Cationic Degradable Hyperbranched Polymers. ACS Applied Bio Materials, 2018, 1, 961-966.	2.3	8
22	Acid Degradable Cationic Galactose-Based Hyperbranched Polymers as Nanotherapeutic Vehicles for Epidermal Growth Factor Receptor (EGFR) Knockdown in Cervical Carcinoma. Biomacromolecules, 2018, 19, 4052-4058.	2.6	21
23	Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Applied Bio Materials, 2018, 1, 356-366.	2.3	33
24	Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Letters, 2018, 7, 904-908.	2.3	149
25	Effective and Specific Gene Silencing of Epidermal Growth Factor Receptors Mediated by Conjugated Oxaborole and Galactose-Based Polymers. ACS Macro Letters, 2017, 6, 768-774.	2.3	31