
## Ines Garcia-Lodeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032450/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A patchy particle model for C-S-H formation. Cement and Concrete Research, 2022, 152, 106658.                                                                                                                                          | 11.0 | 8         |
| 2  | Studying the dosage-dependent influence of hydrophobic alkoxysilane/siloxane admixtures on the performance of repair micromortars. Journal of Building Engineering, 2022, 48, 103905.                                                  | 3.4  | 2         |
| 3  | Influence of Accelerating Admixtures on the Reactivity of Synthetic Aluminosilicate Glasses.<br>Materials, 2022, 15, 818.                                                                                                              | 2.9  | 8         |
| 4  | Effect of alkoxysilane on early age hydration in portland cement pastes. Journal of Building<br>Engineering, 2022, 50, 104127.                                                                                                         | 3.4  | 0         |
| 5  | Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 99. | 3.1  | 10        |
| 6  | Solidification and stabilization of strontium and chloride ions in thermally treated calcium<br>aluminate cement modified with or without sodium polyphosphate. Cement and Concrete Research,<br>2022, 156, 106758.                    | 11.0 | 6         |
| 7  | Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cement and Concrete Research, 2021, 140, 106312.                                                                | 11.0 | 41        |
| 8  | Chemistry of the interaction between an alkoxysilane-based impregnation treatment and cementitious phases. Cement and Concrete Research, 2021, 142, 106351.                                                                            | 11.0 | 22        |
| 9  | Consolidation of artificial decayed portland cement mortars with an alkoxysilane-based impregnation treatment and its influence on mineralogy and pore structure. Construction and Building Materials, 2021, 304, 124532.              | 7.2  | 5         |
| 10 | One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. Journal of Building Engineering, 2021, 44, 103298.                                                                 | 3.4  | 13        |
| 11 | Portland Versus Alkaline Cement: Continuity or Clean Break: "A Key Decision for Global<br>Sustainability― Frontiers in Chemistry, 2021, 9, 705475.                                                                                     | 3.6  | 48        |
| 12 | Characterisation and diagnosis of heritage concrete: case studies at the Eduardo Torroja Institute,<br>Madrid, Spain. Materiales De Construccion, 2021, 71, e262.                                                                      | 0.7  | 1         |
| 13 | Modification of Calcium Aluminate Cement with Phosphate for Incorporation of Strontium Chloride.<br>Journal of Advanced Concrete Technology, 2021, 19, 1296-1308.                                                                      | 1.8  | 1         |
| 14 | Influence of mixing solution on characteristics of calcium aluminate cement modified with sodium polyphosphate. Cement and Concrete Research, 2020, 128, 105951.                                                                       | 11.0 | 7         |
| 15 | The importance of physical parameters for the penetration depth of impregnation products into cementitious materials: Modelling and experimental study. Construction and Building Materials, 2020, 257, 119595.                        | 7.2  | 14        |
| 16 | TEOS Modified With Nano-Calcium Oxalate and PDMS to Protect Concrete Based Cultural Heritage<br>Buildings. Frontiers in Materials, 2020, 7, .                                                                                          | 2.4  | 12        |
| 17 | Use of industrial by-products as alkaline cement activators. Construction and Building Materials, 2020, 253, 119000.                                                                                                                   | 7.2  | 16        |
| 18 | Producing C-S-H gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials. Cement and Concrete Research, 2020, 130, 106008.                                                      | 11.0 | 61        |

INES GARCIA-LODEIRO

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. Journal of the American Ceramic Society, 2019, 102, 427-436.                          | 3.8  | 52        |
| 20 | Strontium in Phosphate-Modified Calcium Aluminate Cement. Key Engineering Materials, 2019, 803, 341-345.                                                                        | 0.4  | 3         |
| 21 | Mechanical-Chemical Activation of Coal Fly Ashes: An Effective Way for Recycling and Make<br>Cementitious Materials. Frontiers in Materials, 2019, 6, .                         | 2.4  | 32        |
| 22 | Use of clays in alkaline hybrid cement preparation. The role of bentonites. Materials Letters, 2018, 233, 134-137.                                                              | 2.6  | 25        |
| 23 | Hybrid Alkaline Cements: Bentonite-Opc Binders. Minerals (Basel, Switzerland), 2018, 8, 137.                                                                                    | 2.0  | 12        |
| 24 | Reduction of water content in calcium aluminate cement with/out phosphate modification for alternative cementation technique. Cement and Concrete Research, 2018, 109, 243-253. | 11.0 | 28        |
| 25 | Recycling Industrial By-Products in Hybrid Cements: Mechanical and Microstructure<br>Characterization. Waste and Biomass Valorization, 2017, 8, 1433-1440.                      | 3.4  | 15        |
| 26 | Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive<br>Model. Materials, 2016, 9, 605.                                             | 2.9  | 106       |
| 27 | Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator.<br>Construction and Building Materials, 2016, 105, 218-226.                 | 7.2  | 112       |
| 28 | Effect of calcium on the alkaline activation of aluminosilicate glass. Ceramics International, 2016, 42, 7697-7707.                                                             | 4.8  | 32        |
| 29 | Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products. IOP Conference Series: Materials Science and Engineering, 2015, 96, 012005.            | 0.6  | 3         |
| 30 | Cements with a low clinker content: versatile use of raw materials. Journal of Sustainable<br>Cement-Based Materials, 2015, 4, 140-151.                                         | 3.1  | 24        |
| 31 | Cements with low Clinker Content. IOP Conference Series: Materials Science and Engineering, 2015, 96, 012006.                                                                   | 0.6  | 0         |
| 32 | The role of aluminium in alkali-activated bentonites. Materials and Structures/Materiaux Et Constructions, 2015, 48, 585-597.                                                   | 3.1  | 30        |
| 33 | Crucial insights on the mix design of alkali-activated cement-based binders. , 2015, , 49-73.                                                                                   |      | 25        |
| 34 | An overview of the chemistry of alkali-activated cement-based binders. , 2015, , 19-47.                                                                                         |      | 82        |
| 35 | Specific Examples of Hybrid Alkaline Cement. MATEC Web of Conferences, 2014, 11, 01001.                                                                                         | 0.2  | 12        |
| 36 | Alkaline activation of synthetic aluminosilicate glass. Ceramics International, 2014, 40, 5547-5558.                                                                            | 4.8  | 52        |

INES GARCIA-LODEIRO

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Some durability aspects of hybrid alkaline cements. MATEC Web of Conferences, 2014, 11, 01008.                                                                                                                                                           | 0.2  | 5         |
| 38 | A review on alkaline activation: new analytical perspectives. Materiales De Construccion, 2014, 64, e022.                                                                                                                                                | 0.7  | 299       |
| 39 | A statistical approach to the study of concrete carbonation. Materiales De Construccion, 2014, 64, e001.                                                                                                                                                 | 0.7  | 2         |
| 40 | Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement<br>and Concrete Research, 2013, 52, 112-122.                                                                                                        | 11.0 | 243       |
| 41 | Hydration kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites, 2013, 39, 82-92.                                                                                                                                            | 10.7 | 152       |
| 42 | "Metakaolin‣lagâ€Clinker Blends.―The Role of Na <sup>+</sup> or K <sup>+</sup> as Alkaline Activators of Theses Ternary Blends. Journal of the American Ceramic Society, 2013, 96, 1991-1998.                                                            | 3.8  | 41        |
| 43 | Alkali-activated based concrete. , 2013, , 439-487.                                                                                                                                                                                                      |      | 8         |
| 44 | <scp><scp>C</scp></scp> – <scp><scp>S</scp>–<scp><scp>H</scp></scp> </scp> Gels: Interpretation of<br><sup>29</sup> <scp><scp>Si </scp> <scp>MAS</scp></scp> â€ <scp>NMR</scp> Spectra. Journal<br>of the American Ceramic Society, 2012, 95, 1440-1446. | 3.8  | 31        |
| 45 | Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram<br>Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 2011, 41, 923-931.                                                                                        | 11.0 | 837       |
| 46 | Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 2010, 40, 27-32.                                                                                                                          | 11.0 | 221       |
| 47 | Effect of Calcium Additions on N–A–S–H Cementitious Gels. Journal of the American Ceramic Society,<br>2010, 93, 1934-1940.                                                                                                                               | 3.8  | 196       |
| 48 | Stability of Synthetic Calcium Silicate Hydrate Gels in Presence of Alkalis, Aluminum, and Soluble<br>Silica. Transportation Research Record, 2010, 2142, 52-57.                                                                                         | 1.9  | 12        |
| 49 | Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement and Concrete Research, 2009, 39, 147-153.                                                                                                                                                   | 11.0 | 508       |
| 50 | FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel<br>Science and Technology, 2008, 45, 63-72.                                                                                                              | 2.4  | 390       |
| 51 | Alkali–aggregate reaction in activated fly ash systems. Cement and Concrete Research, 2007, 37, 175-183.                                                                                                                                                 | 11.0 | 203       |
| 52 | Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 2007, 42, 3055-3065.                                                                                                                                        | 3.7  | 442       |