Gregor Poglajen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethnic comparison in takotsubo syndrome: novel insights from the International Takotsubo Registry. Clinical Research in Cardiology, 2022, 111, 186-196.	3.3	8
2	Transendocardial CD34 ⁺ Cell Therapy Improves Local Mechanical Dyssynchrony in Patients With Nonischemic Dilated Cardiomyopathy. Cell Transplantation, 2022, 31, 096368972210803.	2.5	2
3	Cell Therapy in Heart Failure with Preserved Ejection Fraction. Cardiac Failure Review, 2022, 8, e08.	3.0	3
4	Aortic valve leaflet and root dimensions in normal tricuspid aortic valves: A computed tomography study. Journal of Cardiac Surgery, 2022, 37, 2350-2357.	0.7	3
5	Machine Learning Models for Detection of Decompensation in Chronic Heart Failure Using Heart Sounds. Ambient Intelligence and Smart Environments, 2022, , .	0.3	Ο
6	Stem Cell Therapy in Patients with Heart Failure. Methodist DeBakey Cardiovascular Journal, 2021, 9, 6.	1.0	21
7	Prognostic impact of acute pulmonary triggers in patients with takotsubo syndrome: new insights from the International Takotsubo Registry. ESC Heart Failure, 2021, 8, 1924-1932.	3.1	8
8	Factors associated with degraded trabecular bone score in heart transplant recipients. Clinical Transplantation, 2021, 35, e14274.	1.6	2
9	Larger End-Diastolic Volume Associates With Response to Cell Therapy in Patients With Nonischemic Dilated Cardiomyopathy. Mayo Clinic Proceedings, 2020, 95, 2125-2133.	3.0	7
10	Stem Cell Therapy for Chronic and Advanced Heart Failure. Current Heart Failure Reports, 2020, 17, 261-270.	3.3	3
11	Long-Term Effects of Angiotensin Receptor–Neprilysin Inhibitors on Myocardial Function in Chronic Heart Failure Patients with Reduced Ejection Fraction. Diagnostics, 2020, 10, 522.	2.6	4
12	Coexistence and outcome of coronary artery disease in Takotsubo syndrome. European Heart Journal, 2020, 41, 3255-3268.	2.2	49
13	Response to the letter to the editor: unravel the genetic background of noncompaction before relating it with myocardial hypoperfusion. ESC Heart Failure, 2020, 7, 1999-2000.	3.1	1
14	Impairment of myocardial perfusion correlates with heart failure severity in patients with nonâ€compaction cardiomyopathy. ESC Heart Failure, 2020, 7, 1161-1167.	3.1	5
15	QuantiFERON-CMV guided virostatic prophylaxis after heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 278-281.	0.6	10
16	Machine Learning and End-to-End Deep Learning for the Detection of Chronic Heart Failure From Heart Sounds. IEEE Access, 2020, 8, 20313-20324.	4.2	78
17	Endocrine disorders after heart transplantation: national cohort study. BMC Endocrine Disorders, 2020, 20, 54.	2.2	7
18	Age-Related Variations in Takotsubo Syndrome. Journal of the American College of Cardiology, 2020, 75, 1869-1877.	2.8	42

GREGOR POGLAJEN

#	Article	IF	CITATIONS
19	Abstract 15652: Cell Therapy in Heart Failure With Preserved Ejection Fraction (CELLpEF). Circulation, 2020, 142, .	1.6	1
20	Clinical Predictors and Prognostic Impact of Recovery of Wall Motion Abnormalities in Takotsubo Syndrome: Results From the International Takotsubo Registry. Journal of the American Heart Association, 2019, 8, e011194.	3.7	27
21	Prediction of short―and longâ€term mortality in takotsubo syndrome: the InterTAK Prognostic Score. European Journal of Heart Failure, 2019, 21, 1469-1472.	7.1	20
22	Transendocardial CD34+ Cell Therapy does not Increase the Risk of Ventricular Arrhythmias in Patients with Chronic Heart Failure. Cell Transplantation, 2019, 28, 856-863.	2.5	2
23	Obesity Is Associated with Driveline Infection of Left Ventricular Assist Devices. ASAIO Journal, 2019, 65, 678-682.	1.6	16
24	Stem Cell and Left Ventricular Assist Device Combination Therapy. Circulation: Heart Failure, 2019, 12, e005454.	3.9	6
25	Favorable Response to CD34+ Cell Therapy Is Associated with a Decrease of Galectin-3 Levels in Patients with Chronic Heart Failure. Disease Markers, 2019, 2019, 1-8.	1.3	1
26	Arrhythmogenic Cardiomyopathy. ZdravniÅįki Vestnik, 2019, 87, 599-618.	0.1	0
27	Can stem cell therapy increase the rate of myocardial recovery in left ventricular assist device-supported advanced heart failure patients?—current data and future perspectives. Annals of Translational Medicine, 2019, 7, 613-613.	1.7	1
28	CD34+ Cell Transplantation Improves Right Ventricular Function in Patients with Nonischemic Dilated Cardiomyopathy. Stem Cells Translational Medicine, 2018, 7, 168-172.	3.3	15
29	Stem Cell Therapy in Patients with Chronic Nonischemic Heart Failure. Stem Cells International, 2018, 2018, 1-8.	2.5	10
30	Transendocardial CD34 ⁺ Cell Transplantation in Noncompaction Cardiomyopathy. Cell Transplantation, 2018, 27, 1027-1030.	2.5	3
31	Effects of Repetitive Transendocardial CD34 ⁺ Cell Transplantation in Patients With Nonischemic Dilated Cardiomyopathy. Circulation Research, 2018, 123, 389-396.	4.5	25
32	Effects of Transendocardial CD34+ Cell Transplantation on Diastolic Parameters in Patients with Nonischemic Dilated Cardiomyopathy. Stem Cells Translational Medicine, 2017, 6, 1515-1521.	3.3	17
33	Low serum testosterone is associated with impaired graft function early after heart transplantation. Clinical Transplantation, 2017, 31, e12970.	1.6	4
34	Electroanatomic Properties of the Myocardium Predict Response to CD34+ Cell Therapy in Patients With Ischemic and Nonischemic Heart Failure. Journal of Cardiac Failure, 2017, 23, 153-160.	1.7	11
35	Chronic Heart Failure Detection from Heart Sounds Using a Stack of Machine-Learning Classifiers. , 2017, , .		24
36	Imaging and 1-day kinetics of intracoronary stem cell transplantation in patients with idiopathic dilated cardiomyopathy. Nuclear Medicine and Biology, 2016, 43, 410-414.	0.6	5

#	Article	IF	CITATIONS
37	Efficacy of CD34+ Stem Cell Therapy in Nonischemic Dilated Cardiomyopathy Is Absent in Patients With Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638.	3.3	33
38	LVAD as a Bridge to Heart Transplantation in a Patient with Left Ventricular Noncompaction Cardiomyopathy and Advanced Heart Failure. Heart Surgery Forum, 2016, 19, 128.	0.5	5
39	Stem cell therapy for chronic heart failure. Current Opinion in Cardiology, 2015, 30, 301-310.	1.8	22
40	Intracoronary Transplantation of CD34+ Cells Is Associated With Improved Myocardial Perfusion in Patients With Nonischemic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2015, 21, 145-152.	1.7	51
41	Successful heart transplantation in an adult patient with partial anomalous pulmonary venous return from the left upper lobe. International Journal of Cardiology, 2015, 186, 106-108.	1.7	2
42	Immunologic Network and Response to Intramyocardial CD34+ Stem Cell Therapy in Patients With Dilated Cardiomyopathy. Journal of Cardiac Failure, 2015, 21, 572-582.	1.7	11
43	Increased red cell distribution width is associated with poor stem cell mobilization in patients with advanced chronic heart failure. Biomarkers, 2015, 20, 365-370.	1.9	13
44	Abstract 15453: CD34+ Cell Therapy May Affect Extracellular Matrix Turnover in Patients With Non-ischemic Dilated Cardiomyopathy. Circulation, 2015, 132, .	1.6	0
45	Abstract 18925: The Serum Level of Mir-30a-3p And Mir-31-5p Can Discriminate Responders From Non-responders to CD34 + Cell Therapy in Patients With Dilated Cardiomyopathy. Circulation, 2015, 132,	1.6	0
46	The Presence of Electromechanical Mismatch In Nonischemic Dilated Cardiomyopathy Is Associated With Ventricular Repolarization Instability. Journal of Cardiac Failure, 2014, 20, 891-898.	1.7	2
47	The effects of levosimendan on renal function early after heart transplantation: results from a pilot randomized trial. Clinical Transplantation, 2014, 28, 1105-1111.	1.6	25
48	Effects of Transendocardial CD34 ⁺ Cell Transplantation in Patients With Ischemic Cardiomyopathy. Circulation: Cardiovascular Interventions, 2014, 7, 552-559.	3.9	51
49	Abstract 15086: Transendocardial CD34+ Cell Transplantation Improves Left Ventricular Segmental Wall Motion in Patients With Ischemic Cardiomyopathy. Circulation, 2014, 130, .	1.6	0
50	CD34+ Stem Cell Therapy in Nonischemic Dilated Cardiomyopathy Patients. Clinical Pharmacology and Therapeutics, 2013, 94, 452-458.	4.7	18
51	Relation of B-Type Natriuretic Peptide Level in Heart Failure to Sudden Cardiac Death in Patients With and Without QT Interval Prolongation. American Journal of Cardiology, 2013, 111, 886-890.	1.6	19
52	Comparison of Transendocardial and Intracoronary CD34 ⁺ Cell Transplantation in Patients With Nonischemic Dilated Cardiomyopathy. Circulation, 2013, 128, S42-9.	1.6	169
53	Effects of Intracoronary CD34 ⁺ Stem Cell Transplantation in Nonischemic Dilated Cardiomyopathy Patients. Circulation Research, 2013, 112, 165-173.	4.5	256
54	Use of a Totally Artificial Heart for a Complex Postinfarction Ventricular Septal Defect. Heart Surgery Forum, 2013, 16, 155.	0.5	6

GREGOR POGLAJEN

#	Article	IF	CITATIONS
55	Effects of Intracoronary Stem Cell Transplantation in Patients With Dilated Cardiomyopathy. Journal of Cardiac Failure, 2011, 17, 272-281.	1.7	93
56	Ex Vivo Study of Altered Mitral Apparatus Geometry in Functional Mitral Regurgitation. Heart Surgery Forum, 2010, 13, E172-E176.	0.5	6
57	Diabetes Does Not Affect Ventricular Repolarization and Sudden Cardiac Death Risk in Patients with Dilated Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2009, 32, S146-50.	1.2	4
58	Regurgitant flow in ischemic and dilative mitral regurgitation. Journal of Heart Valve Disease, 2009, 18, 598-606.	0.5	1
59	Percutaneous Ventricular Assist Device Support During Off-Pump Surgical Coronary Revascularization. Annals of Thoracic Surgery, 2008, 86, 637-639.	1.3	9
60	Neurologic Recovery after Prolonged Circulatory Arrest in Surgery for Aortic Dissection. Heart Surgery Forum, 2008, 11, E369-E371.	0.5	1
61	EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. European Heart Journal, 2006, 27, 2725-2736.	2.2	1,063
62	Short QT Interval and Atrial Fibrillation in Patients Without Structural Heart Disease. Journal of the American College of Cardiology, 2006, 47, 1905-1907.	2.8	11