Claudia C Grossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803218/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Atmospheric 222Rn concentration and source term at El Arenosillo 100Âm meteorological tower in southwest Spain. Radiation Measurements, 2012, 47, 149-162.	0.7	40
2	Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels. Journal of Environmental Radioactivity, 2012, 114, 138-145.	0.9	38
3	Inter-comparison of different direct and indirect methods to determine radon flux from soil. Radiation Measurements, 2011, 46, 112-118.	0.7	32
4	Analysis of the vertical radon structure at the Spanish "El Arenosillo―tower station. Journal of Environmental Radioactivity, 2015, 139, 1-17.	0.9	32
5	Study of the daily and seasonal atmospheric CH ₄ mixing ratio variability in a rural Spanish region using ²²² Rn tracer. Atmospheric Chemistry and Physics, 2018, 18, 5847-5860.	1.9	24
6	New metrology for radon at the environmental level. Measurement Science and Technology, 2021, 32, 124008.	1.4	19
7	Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface 210Pb and 7Be concentrations in southwestern Europe. Journal of Environmental Radioactivity, 2016, 165, 103-114.	0.9	16
8	Applicability of the closed-circuit accumulation chamber technique to measure radon surface exhalation rate under laboratory conditions. Radiation Measurements, 2020, 133, 106284.	0.7	16
9	Intercomparison study of atmospheric ²²² Rn and ²²² Rn progeny monitors. Atmospheric Measurement Techniques, 2020, 13, 2241-2255.	1.2	11
10	Intercomparison of Radon Flux Monitors at Low and at High Radium Content Areas under Field Conditions. International Journal of Environmental Research and Public Health, 2022, 19, 4213.	1.2	11
11	Analysis of groundâ€based ²²² Rn measurements over Spain: Filling the gap in southwestern Europe. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,021.	1.2	10
12	Atmospheric Carbon Dioxide variability at Aigüestortes, Central Pyrenees, Spain. Regional Environmental Change, 2019, 19, 313-324.	1.4	8
13	Radon metrology for use in climate change observation and radiation protection at the environmental level. Advances in Geosciences, 0, 57, 37-47.	12.0	8
14	First estimation of CH ₄ fluxes using the ²²² Rn Tracer Method over the central Iberian Peninsula. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	6
15	Inter-comparison of commercial continuous radon monitors responses. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1021, 165927.	0.7	6
16	The Metrological Traceability, Performance and Precision of European Radon Calibration Facilities. International Journal of Environmental Research and Public Health, 2021, 18, 12150.	1.2	5
17	Low-Level Radon Activity Concentration—A MetroRADON International Intercomparison. International Journal of Environmental Research and Public Health, 2022, 19, 5810.	1.2	4
18	Effectiveness Analysis of Filters Used with Radon Detectors under Extreme Environmental Conditions for Long-term Exposures. Physics Procedia, 2015, 80, 113-116.	1.2	3

#	Article	IF	CITATIONS
19	Temporal and spatial variability of ground level atmospheric methane concentrations in the Ebro River Delta. Atmospheric Pollution Research, 2017, 8, 741-753.	1.8	3
20	Metrology for low-cost CO ₂ sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO ₂ fluxes observations. Atmospheric Measurement Techniques, 2022, 15, 2807-2818.	1.2	1