Hoang Vinh Tran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032167/publications.pdf

Version: 2024-02-01

304368 223531 2,225 60 22 46 h-index citations g-index papers 62 62 62 3229 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical Synthesis of Graphene from Waste Discharged Battery Electrodes and Its Applications to Preparation of Graphene/Fe ₃ O ₄ /Chitosanâ€Nanosorbent for Organic Dyes Removal. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	6
2	Graphene Oxide/Fe ₃ O ₄ /Chitosanâ^Coated Nonwoven Polyester Fabric Extracted from Disposable Face Mask for Enhanced Efficiency of Organic Dye Adsorption. Adsorption Science and Technology, 2022, 2022, .	1.5	5
3	Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes. Korean Journal of Chemical Engineering, 2022, 39, 431-439.	1.2	4
4	Thermal Exfoliated Graphite/Chitosan Modified Glassy Carbon Electrode for Cu(II) Ion Sensing. Current Analytical Chemistry, 2022, 18 , .	0.6	0
5	Synthesis of amorphous carbon functionalized Fe ₃ O ₄ nanoparticles as a smart nanosorbent for organic dyes removal. New Journal of Chemistry, 2022, 46, 10644-10651.	1.4	2
6	Electrochemically Effective Surface Area of a Polyaniline Nanowire-Based Platinum Microelectrode and Development of an Electrochemical DNA Sensor. Journal of Nanotechnology, 2022, 2022, 1-10.	1.5	5
7	Verbascoside extracted from <i>Clerodendrum inerme</i> : A natural monomer for the fabrication of a sensitive electrochemical Cu(II) sensor. Journal of Chemical Research, 2022, 46, 174751982210965.	0.6	2
8	Electrosynthesis of electrochemically reduced graphene oxide/polyaniline nanowire/silver nanoflower nanocomposite for development of a highly sensitive electrochemical DNA sensor. RSC Advances, 2021, 11, 19470-19481.	1.7	19
9	Scalable Electrochemical Synthesis of Novel Biogenic Silver Nanoparticles and Its Application to High-Sensitive Detection of 4-Nitrophenol in Aqueous System. Advances in Polymer Technology, 2021, 2021, 1-9.	0.8	11
10	Graphene Oxide/Polyvinyl Alcohol/Fe3O4 Nanocomposite: An Efficient Adsorbent for Co(II) Ion Removal. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-10.	0.7	9
11	Non-woven polyester fabric-supported cuprous oxide/reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue. Journal of Materials Science, 2021, 56, 10353-10366.	1.7	13
12	Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochimica Acta, 2021, 188, 128.	2.5	22
13	Using Palladium Nanocubes on ZnO Nanostructures in Hydrogen Gas Sensor for Fast Response and Recovery Time. Journal of Nanoscience and Nanotechnology, 2021, 21, 2495-2499.	0.9	2
14	A Highly Sensitive Electrochemical DNA Sensor Based on Nanostructured Electrode of Multi-Walled Carbon Nanotubes/Manganese Dioxide Nano-Flowers-like/Polyaniline Nanowires Nanocomposite. Journal of the Electrochemical Society, 2021, 168, 057518.	1.3	15
15	Hydrothermally synthesized nanostructured LiMnxFe1â^'xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ionÂbatteries. Scientific Reports, 2021, 11, 12280.	1.6	13
16	Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network. Nano Energy, 2021, 87, 106165.	8.2	33
17	Glassy carbon electrode modified with luteolin extracted from Myoporum bontioides: a new approach for development of the electrochemical Cu ²⁺ sensor. Multifunctional Materials, 2021, 4, 035004.	2.4	3
18	Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradabilityâ€"The Green Electronics. Sensors, 2020, 20, 5898.	2.1	21

#	Article	IF	CITATIONS
19	Silver Nanoparticles Decorated Polyaniline Nanowires-Based Electrochemical DNA Sensor: Two-step Electrochemical Synthesis. Journal of the Electrochemical Society, 2020, 167, 087508.	1.3	19
20	Hydroxyapatite Nano-Rods/Chitosan Modified Glassy Carbon Electrode for Cu(II) Ions Determination. Electronic Materials Letters, 2020, 16, 396-403.	1.0	7
21	Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arabian Journal of Chemistry, 2020, 13, 6084-6091.	2.3	28
22	Functionalized-AgNPs for Long-Term Stability and Its Applicability in the Detection of Manganese Ions. Advances in Polymer Technology, 2020, 2020, 1-9.	0.8	15
23	Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. Journal of Science: Advanced Materials and Devices, 2020, 5, 385-391.	1.5	20
24	An investigation on kinetic and thermodynamic parameters of methylene blue adsorption onto graphene-based nanocomposite. Chemical Physics, 2020, 535, 110793.	0.9	56
25	Developing highly crystalline, single-phase and copper-poor Cu2ZnSnSe4 nanoparticles for solar cell application. Materials Letters, 2020, 269, 127654.	1.3	2
26	Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium lons in Aqueous Solutions. Advances in Polymer Technology, 2020, 2020, 1-10.	0.8	23
27	Silver nanoparticles on graphene quantum dots as nanozyme for efficient H ₂ O ₂ reduction in a glucose biosensor. Materials Research Express, 2019, 6, 115403.	0.8	17
28	Studying Ni(II) Adsorption of Magnetite/Graphene Oxide/Chitosan Nanocomposite. Advances in Polymer Technology, 2019, 2019, 1-9.	0.8	25
29	Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosensors and Bioelectronics, 2019, 127, 118-125.	5. 3	36
30	Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution. Materials Research Express, 2019, 6, 025018.	0.8	23
31	Nanostructure-based Sensitive Electrochemical Immunosensors. RSC Detection Science, 2019, , 58-85.	0.0	1
32	A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose. Arabian Journal of Chemistry, 2018, 11, 1134-1143.	2.3	79
33	A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Mikrochimica Acta, 2018, 185, 270.	2.5	48
34	Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite. Arabian Journal of Chemistry, 2018, 11, 453-459.	2.3	33
35	An Investigation of Silver Nanoparticles Formation under Presence of Graphene Quantum Dots as Reducing Reagent and Stabilizer. Materials Transactions, 2018, 59, 1106-1111.	0.4	10
36	Enhanced Photocatalytic Activity for Degradation of Organic Dyes Using Magnetite CoFe ₂ O ₄ /BaTiO ₃ Composite. Journal of Nanoscience and Nanotechnology, 2018, 18, 7850-7857.	0.9	7

#	Article	IF	CITATIONS
37	SYNTHESIS AND APPLICATION OF CHITOSAN/GRAPHENE OXIDE/MAGNETITE NANOSTRUCTURED COMPOSITE FOR Fe(III) REMOVAL FROM AQUEOUS SOLUTION. Science and Technology, 2018, 56, 158.	0.1	4
38	Graphene oxide/Fe ₃ O ₄ /chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue. Materials Research Express, 2017, 4, 035701.	0.8	68
39	Fabrication of a quinone containing layer on gold nanoparticles directed to a label-free and reagentless electrochemical miRNA sensor. Analytical Methods, 2017, 9, 2696-2702.	1.3	14
40	Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection. Biosensors and Bioelectronics, 2017, 97, 246-252.	5. 3	27
41	Study of ATO nanoparticles by the solvothermal method for thermal insulated coated glass: a green energy application. Green Processing and Synthesis, 2016, 5, .	1.3	2
42	Facile Hydrothermal Synthesis of Silver/Chitosan Nanocomposite and Application in the Electrochemical Detection of Hydrogen Peroxide. Sensor Letters, 2016, 14, 32-38.	0.4	8
43	Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 035005.	0.7	5
44	An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosensors and Bioelectronics, 2014, 62, 25-30.	5.3	110
45	An innovative strategy for direct electrochemical detection of microRNA biomarkers. Analytical and Bioanalytical Chemistry, 2014, 406, 1241-1244.	1.9	17
46	Labelâ€Free Electrochemical Immunoaffinity Sensor Based on Impedimetric Method for Pesticide Detection. Electroanalysis, 2013, 25, 664-670.	1.5	14
47	Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Materials Science and Engineering C, 2013, 33, 1214-1218.	3.8	143
48	Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosensors and Bioelectronics, 2013, 49, 164-169.	5. 3	162
49	Antibodies Directed to RNA/DNA Hybrids: An Electrochemical Immunosensor for MicroRNAs Detection using Graphene-Composite Electrodes. Analytical Chemistry, 2013, 85, 8469-8474.	3.2	88
50	A Novel Electrochemical Immunosensor for Mirnas Detection Using Reduced Graphene Oxide Electrodes. ECS Meeting Abstracts, 2013, , .	0.0	0
51	A label-free electrochemical immunosensor for direct, signal-on and sensitive pesticide detection. Biosensors and Bioelectronics, 2012, 31, 62-68.	5.3	55
52	Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Materials Science and Engineering C, 2011, 31, 477-485.	3.8	76
53	Some biomedical applications of chitosan-based hybrid nanomaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 045004.	0.7	9
54	Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Materials Science and Engineering C, 2010, 30, 304-310.	3.8	327

#	Article	IF	CITATIONS
55	Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosanbased silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 32-40.	2.3	147
56	Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 95-103.	2.3	60
57	Nanosized magnetofluorescent Fe3O4–curcumin conjugate for multimodal monitoring and drug targeting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 104-112.	2.3	55
58	Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta, 2010, 80, 1164-1169.	2.9	89
59	Facile and solvent-free routes for the synthesis of size-controllable Fe 3 O 4 nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 035001.	0.7	15
60	Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 87-93.	2.6	96