Begoña C Arrue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032029/publications.pdf Version: 2024-02-01

RECOÃ+A C ADDUE

#	Article	IF	CITATIONS
1	High-Performance Morphing Wing for Large-Scale Bio-Inspired Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters, 2022, 7, 8076-8083.	3.3	6
2	Bio-Inspired Morphing Tail for Flapping-Wings Aerial Robots Using Macro Fiber Composites. Applied Sciences (Switzerland), 2021, 11, 2930.	1.3	9
3	Soft-Tentacle Gripper for Pipe Crawling to Inspect Industrial Facilities Using UAVs. Sensors, 2021, 21, 4142.	2.1	10
4	Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance. Sensors, 2021, 21, 8488.	2.1	21
5	Grasp Planning and Visual Servoing for an Outdoors Aerial Dual Manipulator. Engineering, 2020, 6, 77-88.	3.2	23
6	An Efficient Distributed Area Division Method for Cooperative Monitoring Applications with Multiple UAVs. Sensors, 2020, 20, 3448.	2.1	9
7	Robotic System for Inspection by Contact of Bridge Beams Using UAVs. Sensors, 2019, 19, 305.	2.1	57
8	A 3D-Printable Docking System for Aerial Robots: Controlling Aerial Robotic Manipulators in Outdoor Industrial Applications. IEEE Robotics and Automation Magazine, 2019, 26, 44-53.	2.2	20
9	Alâ€Robotics team: A cooperative multiâ€unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge. Journal of Field Robotics, 2019, 36, 104-124.	3.2	6
10	Autonomous Landing of a Multicopter on a Moving Platform Based on Vision Techniques. Advances in Intelligent Systems and Computing, 2018, , 272-282.	0.5	5
11	Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation. , 2017, , .		51
12	Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments. Sensors, 2017, 17, 103.	2.1	43
13	Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors. Sensors, 2016, 16, 700.	2.1	17
14	A distributed framework for surveillance missions with aerial robots including dynamic assignment of the detected intruders. , 2016, , .		4
15	A Distributed Algorithm for Area Partitioning in Grid-Shape and Vector-Shape Configurations with Multiple Aerial Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 543-557.	2.0	11
16	Multi-UAV ground control station for gliding aircraft. , 2015, , .		12
17	Dynamic zone assignment under priorities for perimeter surveillance missions with aerial robots. , 2015, , .		2
18	Distributed Cooperation of Multiple UAVs for Area Monitoring Missions. Mechanisms and Machine Science, 2015, , 471-494.	0.3	5

Begoña C Arrue

#	Article	IF	CITATIONS
19	A decentralized algorithm for area surveillance missions using a team of aerial robots with different sensing capabilities. , 2014, , .		26
20	Persistent monitoring with a team of autonomous gliders using static soaring. , 2014, , .		6
21	One-to-One Coordination Algorithm for Decentralized Area Partition in Surveillance Missions with a Team of Aerial Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 74, 269-285.	2.0	41
22	The block-sharing strategy for area monitoring missions using a decentralized multi-UAV system. , 2014, , .		12
23	Distributed Coordination of Networked Robots for Perimeter Surveillance Tasks. , 2014, , 379-406.		Ο
24	Cooperative perimeter surveillance with a team of mobile robots under communication constraints. , 2013, , .		24
25	Cooperative Large Area Surveillance with a Team of Aerial Mobile Robots for Long Endurance Missions. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 70, 329-345.	2.0	86
26	Decentralized strategy to ensure information propagation in area monitoring missions with a team of UAVs under limited communications. , 2013, , .		30
27	Cooperative perimeter surveillance using aerial robots and fixed ground stations*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 330-336.	0.4	5
28	Distributed Approach for Coverage and Patrolling Missions with a Team of Heterogeneous Aerial Robots under Communication Constraints. International Journal of Advanced Robotic Systems, 2013, 10, 28.	1.3	43
29	Computer vision techniques for forest fire perception. Image and Vision Computing, 2008, 26, 550-562.	2.7	131
30	Laboratory fire spread analysis using visual and infrared images. International Journal of Wildland Fire, 2006, 15, 179.	1.0	21
31	Multiple eyes in the skies - Architecture and perception issues in the comets unmanned air vehicles project. IEEE Robotics and Automation Magazine, 2005, 12, 46-57.	2.2	93
32	Intelligent control of nonholonomic mobile robots with fuzzy perception. Fuzzy Sets and Systems, 2003, 134, 47-64.	1.6	20
33	Smoke monitoring and measurement using image processing: application to forest fires. , 2003, , .		22
34	<title>Aerial monitoring and measurement of forest fires</title> ., 2002, , .		1
35	An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems, 2000, 15, 64-73.	0.2	145
36	Techniques for reducing false alarms in infrared forest-fire automatic detection systems. Control Engineering Practice, 1999, 7, 123-131.	3.2	24

Begoña C Arrue

#	Article	IF	CITATIONS
37	Control and perception components for autonomous vehicle guidance. Application to the ROMEO vehicles. Control Engineering Practice, 1999, 7, 1291-1299.	3.2	29
38	Fast analog architecture for high-order curve recognition. Journal of Electronic Imaging, 1995, 4, 114.	0.5	0
39	<title>High-order curve recognition with the Hough transform using a connectionist approach</title> . , 1993, , .		0
40	Hardware-implementable neural network for rotation-scaling invariant pattern classification. Journal of Electronic Imaging, 1992, 1, 293.	0.5	1
41	<title>Hough transform implementation using an analog associative network</title> . , 1991, , .		0