
Olga Casals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803195/publications.pdf Version: 2024-02-01

OLCA CASALS

#	Article	IF	CITATIONS
1	Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors, 2022, 10, 28.	3.6	8
2	Revisiting Colorimetric Gas Sensors: Compact, Versatile and Cost-Effective. Proceedings (mdpi), 2020, 56, .	0.2	0
3	Visible Light-Driven p-Type Semiconductor Gas Sensors Based on CaFe2O4 Nanoparticles. Sensors, 2020, 20, 850.	3.8	16
4	Micro Light Plates for Photoactivated Micro-Power Gas Sensors. Proceedings (mdpi), 2019, 14, 8.	0.2	0
5	Ultra Low Power Mass-Producible Gas Sensor Based on Efficient Self-Heated GaN Nanorods. , 2019, , .		2
6	A Light-Activated Micropower Gas Sensor for the Detection of NO2 Down to the Parts Per Billion Range. , 2019, , .		0
7	A Microwatt Gas Sensor for No2 Detection in the Parts Per Billion Range. , 2019, , .		1
8	How to implement a selective colorimetric gas sensor with off the shelf components?. Sensors and Actuators B: Chemical, 2019, 293, 41-44.	7.8	4
9	Micro light plates for low-power photoactivated (gas) sensors. Applied Physics Letters, 2019, 114, .	3.3	42
10	A Parts Per Billion (ppb) Sensor for NO ₂ with Microwatt (μW) Power Requirements Based on Micro Light Plates. ACS Sensors, 2019, 4, 822-826.	7.8	85
11	Compact, versatile and cost-effective colorimetric gas sensors. , 2019, , .		2
12	A review on efficient self-heating in nanowire sensors: Prospects for very-low power devices. Sensors and Actuators B: Chemical, 2018, 256, 797-811.	7.8	59
13	Top-Down Fabrication of Arrays of Vertical GaN Nanorods with Freestanding Top Contacts for Environmental Exposure. Proceedings (mdpi), 2018, 2, .	0.2	1
14	Efficient Self-Heating in Nanowire Sensors: Prospects for Very-Low Power. Proceedings (mdpi), 2018, 2,	0.2	0
15	Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders. Proceedings (mdpi), 2018, 2, 834.	0.2	3
16	An LED Platform for Micropower Gas Sensors. Proceedings (mdpi), 2018, 2, .	0.2	1
17	Colorimetric sensor for bad odor detection using automated color correction. , 2017, , .		1
18	Highly Specific and Wide Range NO ₂ Sensor with Color Readout. ACS Sensors, 2017, 2, 1612-1618.	7.8	11

OLGA CASALS

#	Article	IF	CITATIONS
19	NO2 Measurements with RGB Sensors for Easy In-Field Test. Proceedings (mdpi), 2017, 1, .	0.2	1
20	Charge Transfer Characteristics of n-type In _{0.1} Ga _{0.9} N Photoanode across Semiconductor–Liquid Interface. Journal of Physical Chemistry C, 2016, 120, 28917-28923.	3.1	2
21	Integrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors. ACS Sensors, 2016, 1, 1256-1264.	7.8	28
22	Self-heating in pulsed mode for signal quality improvement: Application to carbon nanostructures-based sensors. Sensors and Actuators B: Chemical, 2016, 226, 254-265.	7.8	20
23	Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sensors and Actuators B: Chemical, 2016, 232, 402-409.	7.8	31
24	A Low-cost Approach to Low-power Gas Sensors Based on Self-Heating Effects in Large Arrays of Nanostructures. Procedia Engineering, 2015, 120, 787-790.	1.2	11
25	Locally Grown SnO 2 NWs as Low Power Ammonia Sensor. Procedia Engineering, 2015, 120, 215-219.	1.2	4
26	Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges. Procedia Engineering, 2015, 120, 488-491.	1.2	2
27	Facile integration of ordered nanowires in functional devices. Sensors and Actuators B: Chemical, 2015, 221, 104-112.	7.8	27
28	Novel Approaches Towards Highly Selective Self-Powered Gas Sensors. Procedia Engineering, 2015, 120, 623-627.	1.2	5
29	A Highly Selective and Selfâ€Powered Gas Sensor Via Organic Surface Functionalization of pâ€Si/nâ€ZnO Diodes. Advanced Materials, 2014, 26, 8017-8022.	21.0	103
30	SiC-based MIS gas sensor for high water vapor environments. Sensors and Actuators B: Chemical, 2012, 175, 60-66.	7.8	17
31	SiC-Based MIS Gas Sensor for High Water Vapor Environments. Procedia Engineering, 2011, 25, 1321-1324.	1.2	0
32	Detection of amines with chromium-doped WO3 mesoporous material. Sensors and Actuators B: Chemical, 2009, 140, 557-562.	7.8	51
33	Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2990-2994.	14.9	96
34	Nanostructured oxides on porous silicon microhotplates for NH3 sensing. Microelectronic Engineering, 2008, 85, 1116-1119.	2.4	14
35	Gas Sensing Devices Based on 1D Metal-Oxide Nanostructures: Fabrication, Testing and Device Integration. ECS Transactions, 2008, 13, 57-64.	0.5	0
36	Bottom-up Fabrication of Individual SnO2 Nanowires-based Gas Sensors on Suspended Micromembranes. Materials Research Society Symposia Proceedings, 2007, 1052, 1.	0.1	0

OLGA CASALS

#	Article	IF	CITATIONS
37	Micro and nanotechnologies for the development of an integrated chromatographic system. , 2007, , .		2
38	Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Physical Review B, 2007, 76, .	3.2	105
39	Water vapor detection with individual tin oxide nanowires. Nanotechnology, 2007, 18, 424016.	2.6	59
40	μ-Porous silicon (μPS) gas sensor based on interdigitated μ-electrodes (IDμE's). , 2007, , .		0
41	Portable microsensors based on individual SnO ₂ nanowires. Nanotechnology, 2007, 18, 495501.	2.6	68
42	High response and stability in CO and humidity measures using a single SnO2 nanowire. Sensors and Actuators B: Chemical, 2007, 121, 3-17.	7.8	165
43	Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology, 2006, 17, 5577-5583.	2.6	135
44	Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sensors and Actuators B: Chemical, 2006, 118, 198-203.	7.8	42
45	Fabrication of metallic contacts to nanometre-sized materials using a focused ion beam (FIB). Materials Science and Engineering C, 2006, 26, 1063-1066.	7.3	57
46	Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor. Sensors and Actuators B: Chemical, 2005, 109, 119-127.	7.8	10
47	Electrical characterisation of nanowires and nanoparticles contacted using a FIB. , 0, , .		0
48	Electrical response of MOSiC gas sensors to CO, NO/sub 2/ and C/sub 3/H/sub 8/. , 0, , .		0