Jacques Mathieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031841/publications.pdf

Version: 2024-02-01

331259 377514 34 1,865 21 34 citations h-index g-index papers 34 34 34 2401 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Renaissance for Phage-Based Bacterial Control. Environmental Science & Emp; Technology, 2022, 56, 4691-4701.	4.6	15
2	Comment on "Mechanistic Understanding of Superoxide Radical-Mediated Degradation of Perfluorocarboxylic Acids― Environmental Science & Camp; Technology, 2022, 56, 5287-5288.	4.6	3
3	Rapid Metabolism of 1,4-Dioxane to below Health Advisory Levels by Thiamine-Amended <i>Rhodococcus ruber </i> Strain 219. Environmental Science and Technology Letters, 2021, 8, 975-980.	3.9	11
4	Discerning the Relevance of Superoxide in PFOA Degradation. Environmental Science and Technology Letters, 2020, 7, 653-658.	3.9	36
5	Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation, 2020, 31, 201-211.	1.5	7
6	Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane. Science of the Total Environment, 2020, 744, 140823.	3.9	17
7	Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water, 2020, 3, .	3.1	242
8	Bacteriophages from Arsenic-Resistant Bacteria Transduced Resistance Genes, which Changed Arsenic Speciation and Increased Soil Toxicity. Environmental Science and Technology Letters, 2019, 6, 675-680.	3.9	25
9	Going Viral: Emerging Opportunities for Phage-Based Bacterial Control in Water Treatment and Reuse. Accounts of Chemical Research, 2019, 52, 849-857.	7.6	61
10	Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Applied Microbiology and Biotechnology, 2018, 102, 3375-3386.	1.7	19
11	Bacterial Endospores as Phage Genome Carriers and Protective Shells. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
12	1,4â€Dioxaneâ€degrading consortia can be enriched from uncontaminated soils: prevalence of <i>Mycobacterium</i> and soluble diâ€iron monooxygenase genes. Microbial Biotechnology, 2018, 11, 189-198.	2.0	43
13	Control of Antibiotic-Resistant Bacteria in Activated Sludge Using Polyvalent Phages in Conjunction with a Production Host. Environmental Science and Technology Letters, 2017, 4, 137-142.	3.9	43
14	Suppression of Enteric Bacteria by Bacteriophages: Importance of Phage Polyvalence in the Presence of Soil Bacteria. Environmental Science & Environme	4.6	42
15	Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. Water Research, 2017, 112, 217-225.	5.3	37
16	1,4-Dioxane Biodegradation by <i>Mycobacterium dioxanotrophicus</i> PH-06 Is Associated with a Group-6 Soluble Di-Iron Monooxygenase. Environmental Science and Technology Letters, 2017, 4, 494-499.	3.9	45
17	Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environmental Science: Nano, 2017, 4, 1817-1826.	2.2	43
18	2-Hydroxypropyl-beta-cyclodextrin (HP \hat{I}^2 CD) reduces age-related lipofuscin accumulation through a cholesterol-associated pathway. Scientific Reports, 2017, 7, 2197.	1.6	10

#	Article	IF	CITATIONS
19	Whole-Genome Sequence of the 1,4-Dioxane-Degrading Bacterium <i>Mycobacterium dioxanotrophicus / i> PH-06. Genome Announcements, 2017, 5, .</i>	0.8	19
20	Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 2016, 82, 808-815.	1.4	99
21	Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons. Environmental Science & Environme	4.6	89
22	Elucidating the genetic basis for <i>Escherichia coli</i> defense against silver toxicity using mutant arrays. Environmental Toxicology and Chemistry, 2014, 33, 993-997.	2.2	16
23	Microbial Dynamics and Control in Shale Gas Production. Environmental Science and Technology Letters, 2014, 1, 465-473.	3.9	44
24	Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration and Biodegradation, 2014, 91, 82-87.	1.9	51
25	Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research, 2014, 48, 317-325.	5.3	155
26	Persistence of Extracellular DNA in River Sediment Facilitates Antibiotic Resistance Gene Propagation. Environmental Science &	4.6	345
27	The Abundance of Tetrahydrofuran/Dioxane Monooxygenase Genes (<i>thmA</i> / <i>dxmA</i>) and 1,4-Dioxane Degradation Activity Are Significantly Correlated at Various Impacted Aquifers. Environmental Science and Technology Letters, 2014, 1, 122-127.	3.9	49
28	Proliferation of Multidrug-Resistant New Delhi Metallo- \hat{l}^2 -lactamase Genes in Municipal Wastewater Treatment Plants in Northern China. Environmental Science and Technology Letters, 2014, 1, 26-30.	3.9	133
29	Recombination-assisted megaprimer (RAM) cloning. MethodsX, 2014, 1, 23-29.	0.7	10
30	Widespread Distribution of Soluble Di-Iron Monooxygenase (SDIMO) Genes in Arctic Groundwater Impacted by 1,4-Dioxane. Environmental Science & Environm	4.6	51
31	Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted <i>Chromobacterium</i> oxidase. Biotechnology and Bioengineering, 2012, 109, 2409-2415.	1.7	22
32	Medical Bioremediation: A Concept Moving Toward Reality. Rejuvenation Research, 2009, 12, 411-419.	0.9	20
33	Medical bioremediation of age-related diseases. Microbial Cell Factories, 2009, 8, 21.	1.9	21
34	Microbial degradation of 7-ketocholesterol. Biodegradation, 2008, 19, 807-813.	1.5	25