Shingo Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031643/publications.pdf

Version: 2024-02-01

		109137	98622
85	4,743 citations	35	67
papers	citations	h-index	g-index
99	99	99	3030
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Coordinationâ^'Insertion Copolymerization of Fundamental Polar Monomers. Chemical Reviews, 2009, 109, 5215-5244.	23.0	780
2	Iron-Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents. Journal of the American Chemical Society, 2004, 126, 3686-3687.	6.6	493
3	Copolymerization of Vinyl Acetate with Ethylene by Palladium/Alkylphosphineâ°'Sulfonate Catalysts. Journal of the American Chemical Society, 2009, 131, 14606-14607.	6.6	198
4	Benzeneâ€Fused Azacorannulene Bearing an Internal Nitrogen Atom. Angewandte Chemie - International Edition, 2015, 54, 7256-7260.	7. 2	174
5	Iron-Catalyzed Chemoselective Cross-Coupling of Primary and Secondary Alkyl Halides with Arylzinc Reagents. Synlett, 2005, 2005, 1794-1798.	1.0	159
6	Quantification of the Steric Influence of Alkylphosphine–Sulfonate Ligands on Polymerization, Leading to High-Molecular-Weight Copolymers of Ethylene and Polar Monomers. Journal of the American Chemical Society, 2014, 136, 11898-11901.	6.6	141
7	Copolymerization of carbon dioxide and butadiene via a lactone intermediate. Nature Chemistry, 2014, 6, 325-331.	6.6	138
8	Coordinationâ^'Insertion Copolymerization of Allyl Monomers with Ethylene. Journal of the American Chemical Society, 2011, 133, 1232-1235.	6.6	124
9	Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts. Angewandte Chemie - International Edition, 2016, 55, 2835-2839.	7.2	120
10	Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon. Structure, 2001, 9, 205-214.	1.6	98
11	Crystalline Isotactic Polar Polypropylene from the Palladium atalyzed Copolymerization of Propylene and Polar Monomers. Angewandte Chemie - International Edition, 2016, 55, 7505-7509.	7.2	95
12	Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chemical Communications, 2009, , 1216.	2.2	94
13	Iron-Catalyzed Cross-Coupling of Alkyl Sulfonates with Arylzinc Reagents. Organic Letters, 2009, 11, 4306-4309.	2.4	92
14	Diastereoselective Carbometalation of Oxa―and Azabicyclic Alkenes under Iron Catalysis. Angewandte Chemie - International Edition, 2011, 50, 454-457.	7.2	80
15	A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen ontaining Buckybowl. Angewandte Chemie - International Edition, 2018, 57, 9818-9822.	7.2	77
16	Elucidating the Key Role of Phosphineâ^'Sulfonate Ligands in Palladium-Catalyzed Ethylene Polymerization: Effect of Ligand Structure on the Molecular Weight and Linearity of Polyethylene. ACS Catalysis, 2016, 6, 6101-6113.	5.5	75
17	Palladium/IzQO-Catalyzed Coordination–Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group. Journal of the American Chemical Society, 2018, 140, 1876-1883.	6.6	74
18	Coordination–insertion copolymerization of polar vinyl monomers by palladium catalysts. Chemical Record, 2010, 10, 315-325.	2.9	70

#	Article	IF	CITATIONS
19	Ethylene/allyl monomer cooligomerization by nickel/phosphine–sulfonate catalysts. Dalton Transactions, 2012, 41, 13807.	1.6	68
20	Isoquinolino[4,3,2-de]phenanthridine: synthesis and its use in 1,3-dipolar cycloadditions to form nitrogen-containing polyaromatic hydrocarbons. Chemical Communications, 2015, 51, 221-224.	2.2	68
21	Methylene-Bridged Bisphosphine Monoxide Ligands for Palladium-Catalyzed Copolymerization of Ethylene and Polar Monomers. ACS Macro Letters, 2018, 7, 305-311.	2.3	65
22	Competing Annulene and Radialene Structures in a Single Anti-Aromatic Molecule Studied by High-Resolution Atomic Force Microscopy. ACS Nano, 2017, 11, 8122-8130.	7.3	64
23	Pd-Catalyzed Copolymerization of Methyl Acrylate with Carbon Monoxide: Structures, Properties and Mechanistic Aspects toward Ligand Design. Journal of the American Chemical Society, 2011, 133, 6761-6779.	6.6	63
24	Ligand-controlled insertion regioselectivity accelerates copolymerisation of ethylene with methyl acrylate by cationic bisphosphine monoxide–palladium catalysts. Chemical Science, 2016, 7, 737-744.	3.7	63
25	Copolymerisation of ethylene with polar monomers by using palladium catalysts bearing an N-heterocyclic carbene–phosphine oxide bidentate ligand. Chemical Communications, 2017, 53, 2630-2633.	2.2	61
26	Synthesis of Pyrroleâ€Fused Corannulenes: 1,3â€Dipolar Cycloaddition of Azomethine Ylides to Corannulene. Angewandte Chemie - International Edition, 2017, 56, 15560-15564.	7.2	59
27	Nickel-Catalyzed Propylene/Polar Monomer Copolymerization. ACS Macro Letters, 2018, 7, 213-217.	2.3	55
28	Synthesis and Reactivity of Bucky Ruthenocene Ru(Î-5-C60Me5)(Î-5-C5H5). Chemistry Letters, 2004, 33, 68-69.	0.7	54
29	<i>P</i> -Chiral Phosphine–Sulfonate/Palladium-Catalyzed Asymmetric Copolymerization of Vinyl Acetate with Carbon Monoxide. Journal of the American Chemical Society, 2012, 134, 12366-12369.	6.6	49
30	Palladium-Catalyzed Homo- and Copolymerization of Polar Monomers: Synthesis of Aliphatic and Aromatic Polymers. Bulletin of the Chemical Society of Japan, 2018, 91, 251-261.	2.0	47
31	Alkylation of Magnesium Enamide with Alkyl Chlorides and Fluorides. Journal of the American Chemical Society, 2005, 127, 14192-14193.	6.6	44
32	Formal Aryne Polymerization: Use of [2.2.1]Oxabicyclic Alkenes as Aryne Equivalents. Journal of the American Chemical Society, 2014, 136, 7547-7550.	6.6	43
33	Selective synthesis of unsymmetric dibenzo[a,e]pentalenes by a rhodium-catalysed stitching reaction. Chemical Science, 2017, 8, 101-107.	3.7	43
34	Crystalline Isotactic Polar Polypropylene from the Palladium atalyzed Copolymerization of Propylene and Polar Monomers. Angewandte Chemie, 2016, 128, 7631-7635.	1.6	41
35	Stepwise Reduction of Azapentabenzocorannulene. Angewandte Chemie - International Edition, 2019, 58, 12107-12111.	7.2	35
36	On-Surface Synthesis of a π-Extended Diaza[8]circulene. Journal of the American Chemical Society, 2020, 142, 11363-11369.	6.6	34

#	Article	IF	CITATIONS
37	A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogenâ€Containing Buckybowl. Angewandte Chemie, 2018, 130, 9966-9970.	1.6	33
38	Functionalization of Azapentabenzocorannulenes by Fivefold Câ^'H Borylation and Crossâ€Coupling Arylation: Application to Columnar Liquidâ€Crystalline Materials. Chemistry - A European Journal, 2018, 24, 14075-14078.	1.7	31
39	Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts. Angewandte Chemie, 2016, 128, 2885-2889.	1.6	30
40	Surface plasmon and guided optical wave microscopies. Scanning, 1994, 16, 353-362.	0.7	27
41	An Endergonic Synthesis of Single Sondheimer–Wong Diyne by Local Probe Chemistry. Angewandte Chemie - International Edition, 2020, 59, 10842-10847.	7.2	27
42	Vinylarene/CO Copolymerization and Vinylarene/Polar Vinyl Monomer/CO Terpolymerization Using Palladium/Phosphineâ€Sulfonate Catalysts. Chemistry - an Asian Journal, 2011, 6, 690-697.	1.7	26
43	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
44	Iron-catalysed homo- and copolymerisation of propylene: steric influence of bis(imino)pyridine ligands. Dalton Transactions, 2015, 44, 20745-20752.	1.6	23
45	Synthesis and Reactivity of Methylpalladium Complexes Bearing a Partially Saturated IzQO Ligand. Organometallics, 2018, 37, 2286-2296.	1.1	22
46	Palladium complexes bearing an Nâ€heterocyclic carbene–sulfonamide ligand for cooligomerization of ethylene and polar monomers. Journal of Polymer Science Part A, 2019, 57, 474-477.	2.5	22
47	Synthesis of Pyrroleâ€Fused Corannulenes: 1,3â€Dipolar Cycloaddition of Azomethine Ylides to Corannulene. Angewandte Chemie, 2017, 129, 15766-15770.	1.6	20
48	SPECIFIC PHOTOCOUPLING OF 5â€BROMOURIDINE TO TRYPTOPHAN IN AQUEOUS FROZEN SOLUTION§. Photochemistry and Photobiology, 1981, 33, 15-19.	1.3	18
49	Ritter-type iodo(<scp>iii</scp>)amidation of unactivated alkynes for the stereoselective synthesis of multisubstituted enamides. Chemical Science, 2021, 12, 15128-15133.	3.7	17
50	Synthesis of a Ï€â€Extended Azacorannulenophane Enabled by Strainâ€Induced 1,3â€Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
51	Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment. Nature Communications, 2022, 13, 1498.	5.8	16
52	Ethylene Polymerization by Palladium/Phosphine–Sulfonate Catalysts in the Presence and Absence of Protic Solvents: Structural and Mechanistic Differences. Organometallics, 2011, 30, 6049-6052.	1.1	15
53	Synthesis of π-Extended Imidazoles by 1,3-Dipolar Cycloaddition of Polycyclic Aromatic Azomethine Ylides with Nitriles. Organic Letters, 2020, 22, 6132-6137.	2.4	15
54	Stepwise Reduction of Azapentabenzocorannulene. Angewandte Chemie, 2019, 131, 12235-12239.	1.6	14

#	Article	IF	CITATIONS
55	Formal Aryne/Carbon Monoxide Copolymerization To Form Aromatic Polyketones/Polyketals. Macromolecules, 2015, 48, 1959-1962.	2.2	13
56	Regioselective \hat{I} -alkylation of ketones with alkyl chlorides and fluorides via highly nucleophilic magnesium enamides. Tetrahedron, 2007, 63, 8440-8448.	1.0	12
57	Direct Aldol Polymerization of Acetaldehyde with Organocatalyst/Brønsted Acid Systems. Asian Journal of Organic Chemistry, 2013, 2, 977-982.	1.3	12
58	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angewandte Chemie, 2022, 134, .	1.6	10
59	Surface plasmon and guided optical wave microscopies. Scanning, 1994, 16, 353-361.	0.7	9
60	Regio- and Stereoselective Synthesis of Enol Carboxylate, Phosphate, and Sulfonate Esters via lodo(III)functionalization of Alkynes. Organic Letters, 2022, 24, 430-434.	2.4	7
61	Ping-pong polymerization by allylation and hydroformylation for alternating vinyl alcohol–vinyl monomer copolymers. Chemical Communications, 2012, 48, 10481.	2.2	6
62	Friedel–Crafts functionalization of the cyclopentadienyl ligand in buckymetallocenes. Dalton Transactions, 2014, 43, 7407.	1.6	6
63	Formal aryne/ethylene copolymerization to form polyethylene containing o-arylene units in the main chain. Polymer Journal, 2015, 47, 474-480.	1.3	6
64	Chain-growth polymerization enabling formation/introduction of arylene groups into polymer main chains. Polymer Journal, 2016, 48, 667-677.	1.3	6
65	Synthesis of a Ï€â€Extended Azacorannulenophane Enabled by Strainâ€Induced 1,3â€Dipolar Cycloaddition. Angewandte Chemie, 0, , .	1.6	6
66	Alkene/CO Copolymerization. , 2012, , 825-842.		5
67	Equivalent Circuit Modeling of DC and AC Ferrite Magnetic Properties Using H-Input and B-Input Play Models. IEEE Transactions on Magnetics, 2013, 49, 1985-1988.	1.2	5
68	Effect of the backbone structure of bidentate ligands in palladium- and nickel-catalyzed polar monomer copolymerization. Science China Chemistry, 2018, 61, 1349-1350.	4.2	5
69	Iron-catalysed enantioselective carbometalation of azabicycloalkenes. Chemical Communications, 2021, 57, 6975-6978.	2.2	5
70	1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Organic Chemistry Frontiers, 2022, 9, 4128-4134.	2.3	5
71	The Rapid Synthesis of π-Extended Azacorannulenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 1128-1135.	0.0	4
72	High sensitive photopolymers containing dibenz[b,f]azepine group. Journal of Polymer Science, Part C: Polymer Letters, 1987, 25, 223-227.	0.7	3

#	Article	IF	Citations
73	Finite element analysis of a ferrite-core inductor with direct current bias current using an equivalent-circuit model of dynamic hysteretic properties. Journal of Applied Physics, 2014, 115, 17A330.	1.1	2
74	Low-frequency Magnetic Fluctuation Measurement during Magnetic Reconnection in Counter-helicity Plasma Merging Experiment. IEEJ Transactions on Fundamentals and Materials, 2012, 132, 233-238.	0.2	2
75	Carbon-Carbon Bond Forming Reactions by Direct Use of Simple Alcohols. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 618-619.	0.0	1
76	An Endergonic Synthesis of Single Sondheimer–Wong Diyne by Local Probe Chemistry. Angewandte Chemie, 2020, 132, 10934-10939.	1.6	1
77	MHD Simulation of Dynamic Divertor by Plasmoid Ejection. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 963-964.	0.2	1
78	Dynamics of the Reorientation of a Ferroelectric Liquid Crystal Under an Electric Field Studied by Time-Resolved Optical Waveguide Spectroscopy. Molecular Crystals and Liquid Crystals, 1997, 308, 001-026.	0.3	0
79	Iron-Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents ChemInform, 2004, 35, no.	0.1	0
80	Iron-Catalyzed Chemoselective Cross-Coupling of Primary and Secondary Alkyl Halides with Arylzinc Reagents ChemInform, 2005, 36, no.	0.1	0
81	Development of new ion beam monitor system using conductive mesh. , 2013, , .		0
82	Frontispiz: Benzene-Fused Azacorannulene Bearing an Internal Nitrogen Atom. Angewandte Chemie, 2015, 127, n/a-n/a.	1.6	0
83	Frontispiece: Benzene-Fused Azacorannulene Bearing an Internal Nitrogen Atom. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	7.2	0
84	Titelbild: Stepwise Reduction of Azapentabenzocorannulene (Angew. Chem. 35/2019). Angewandte Chemie, 2019, 131, 12051-12051.	1.6	0
85	2 or 3 Things I Know about Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 66-68.	0.0	O