SÃ-lvia Pujals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031623/publications.pdf Version: 2024-02-01

ς Δινία Ριμαις

#	Article	IF	CITATIONS
1	Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery. Nanomaterials, 2022, 12, 399.	4.1	16
2	Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles. ACS Photonics, 2022, 9, 101-109.	6.6	4
3	Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS Nano, 2022, 16, 5615-5626.	14.6	18
4	Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking. Methods in Cell Biology, 2021, 162, 303-331.	1.1	10
5	Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules, 2021, 22, 1197-1210.	5.4	21
6	Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647874.	4.1	14
7	The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathogens, 2021, 17, e1009455.	4.7	27
8	Fast Labelâ€Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning. Small Methods, 2021, 5, e2100279.	8.6	10
9	Dielectric Imaging of Fixed HeLa Cells by In-Liquid Scanning Dielectric Force Volume Microscopy. Nanomaterials, 2021, 11, 1402.	4.1	7
10	Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS ONE, 2021, 16, e0251821.	2.5	21
11	Unveiling Polymerization Mechanism in pHâ€regulated Supramolecular Fibers in Aqueous Media. Chemistry - A European Journal, 2021, 27, 11056-11060.	3.3	7
12	Correlating Super-Resolution Microscopy and Transmission Electron Microscopy Reveals Multiparametric Heterogeneity in Nanoparticles. Nano Letters, 2021, 21, 5360-5368.	9.1	23
13	Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy. Applied Nano, 2021, 2, 289-302.	2.0	Ο
14	Nanoscopy for endosomal escape quantification. Nanoscale Advances, 2021, 3, 10-23.	4.6	24
15	Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip. ACS Applied Bio Materials, 2021, 4, 669-681.	4.6	22
16	Quantifying the effect of PEG architecture on nanoparticle ligand availability using DNA-PAINT. Nanoscale Advances, 2021, 3, 6876-6881.	4.6	11
17	Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT. Nature Chemical Biology, 2021, 17, 1281-1288.	8.0	19
18	Aptamers with Tunable Affinity Enable Singleâ€Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells. Angewandte Chemie, 2020, 132, 18705-18714.	2.0	13

SÃŁVIA PUJALS

#	Article	IF	CITATIONS
19	Rücktitelbild: Aptamers with Tunable Affinity Enable Singleâ€Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells (Ángew. Chem. 42/2020). Angewandte Chemie, 2020, 132, 18980-18980.	2.0	0
20	PAINTâ€ing Fluorenylmethoxycarbonyl (Fmoc)â€Diphenylalanine Hydrogels. Chemistry - A European Journal, 2020, 26, 9869-9873.	3.3	16
21	An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water. Journal of the American Chemical Society, 2020, 142, 10069-10078.	13.7	49
22	Aptamers with Tunable Affinity Enable Singleâ€Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 18546-18555.	13.8	46
23	Super-resolution Microscopy for Nanomedicine Research. ACS Nano, 2019, 13, 9707-9712.	14.6	59
24	Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nature Reviews Chemistry, 2019, 3, 68-84.	30.2	145
25	Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nature Materials, 2019, 18, 1015-1023.	27.5	40
26	Super-resolution microscopy reveals significant impact of M2e-specific monoclonal antibodies on influenza A virus filament formation at the host cell surface. Scientific Reports, 2019, 9, 4450.	3.3	18
27	Catalytically Active Single-Chain Polymeric Nanoparticles: Exploring Their Functions in Complex Biological Media. Journal of the American Chemical Society, 2018, 140, 3423-3433.	13.7	141
28	From isodesmic to highly cooperative: reverting the supramolecular polymerization mechanism in water by fine monomer design. Chemical Communications, 2018, 54, 4112-4115.	4.1	35
29	Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy. , 2018, , 251-274.		1
30	Advanced Optical Microscopy Techniques for the Investigation of Cell-Nanoparticle Interactions. , 2018, , 219-236.		7
31	Nanoscale Mapping Functional Sites on Nanoparticles by Points Accumulation for Imaging in Nanoscale Topography (PAINT). ACS Nano, 2018, 12, 7629-7637.	14.6	54
32	Ultrastructural Imaging of <i>Salmonella</i> –Host Interactions Using Superâ€resolution Correlative Lightâ€Electron Microscopy of Bioorthogonal Pathogens. ChemBioChem, 2018, 19, 1766-1770.	2.6	19
33	Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chemical Communications, 2017, 53, 7294-7297.	4.1	23
34	Micellar Stability in Biological Media Dictates Internalization in Living Cells. Journal of the American Chemical Society, 2017, 139, 16677-16687.	13.7	45
35	Superâ€Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona. Small, 2017, 13, 1701631.	10.0	109
36	Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: Nâ€ŧerminal helix derived from adenovirus internal protein VI as a model. Biopolymers, 2016, 106, 430-439.	2.4	6

SÃŁVIA PUJALS

#	Article	IF	CITATIONS
37	Brief Report: Translation and Adaptation of the Theory of Mind Inventory to Spanish. Journal of Autism and Developmental Disorders, 2016, 46, 685-690.	2.7	14
38	Curvature Engineering: Positive Membrane Curvature Induced by Epsin N-Terminal Peptide Boosts Internalization of Octaarginine. ACS Chemical Biology, 2013, 8, 1894-1899.	3.4	49
39	3P201 The Sequence Effects of the Amphypathic Peptides of Adenovirus Protein VI on Their Curvature Inducing Ability(13A. Biological & Artifical membrane: Structure & Property,Poster). Seibutsu Butsuri, 2013, 53, S245.	0.1	0
40	Inorganic nanoparticles and the immune system: detection, selective activation and tolerance. , 2012, , .		0
41	Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells. Molecular Therapy, 2012, 20, 984-993.	8.2	179
42	Effect of the Attachment of a Penetration Accelerating Sequence and the Influence of Hydrophobicity on Octaarginine-Mediated Intracellular Delivery. Molecular Pharmaceutics, 2012, 9, 1222-1230.	4.6	66
43	Transformation of an antimicrobial peptide into a plasma membrane-permeable, mitochondria-targeted peptide via the substitution of lysine with arginine. Chemical Communications, 2012, 48, 11097.	4.1	45
44	Electrochemical Investigation of Cellular Uptake of Quantum Dots Decorated with a Proline-Rich Cell Penetrating Peptide. Bioconjugate Chemistry, 2011, 22, 180-185.	3.6	13
45	Expressed protein ligation for the preparation of fusion proteins with cell penetrating peptides for endotoxin removal and intracellular delivery. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2249-2257.	2.6	15
46	A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. Journal of Controlled Release, 2009, 133, 52-59.	9.9	98
47	Shuttling Gold Nanoparticles into Tumoral Cells with an Amphipathic Prolineâ€Rich Peptide. ChemBioChem, 2009, 10, 1025-1031.	2.6	50
48	Novel System to Achieve One-Pot Modification of Cargo Molecules with Oligoarginine Vectors for Intracellular Delivery. Bioconjugate Chemistry, 2009, 20, 249-257.	3.6	31
49	Cytosolic Targeting of Macromolecules Using a pH-Dependent Fusogenic Peptide in Combination with Cationic Liposomes. Bioconjugate Chemistry, 2009, 20, 953-959.	3.6	81
50	Peptides conjugated to gold nanoparticles induce macrophage activation. Molecular Immunology, 2009, 46, 743-748.	2.2	130
51	Homogeneous Conjugation of Peptides onto Gold Nanoparticles Enhances Macrophage Response. ACS Nano, 2009, 3, 1335-1344.	14.6	148
52	<scp>D</scp> ‣AP: A New, Noncytotoxic, and Fully Protease Resistant Cellâ€Penetrating Peptide. ChemMedChem, 2008, 3, 296-301.	3.2	51
53	Proline-rich, amphipathic cell-penetrating peptides. Advanced Drug Delivery Reviews, 2008, 60, 473-484.	13.7	166
54	<i>all</i> - <scp>D</scp> proline-rich cell-penetrating peptides: a preliminary <i>in vivo</i> internalization study. Biochemical Society Transactions, 2007, 35, 794-796.	3.4	64

SÃŁVIA PUJALS

#	Article	IF	CITATIONS
55	Replacement of a Proline with Silaproline Causes a 20-Fold Increase in the Cellular Uptake of a Pro-Rich Peptide. Journal of the American Chemical Society, 2006, 128, 8479-8483.	13.7	66
56	Mechanistic aspects of CPP-mediated intracellular drug delivery: Relevance of CPP self-assembly. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 264-279.	2.6	198
57	The Guanidinium Group: A Key Player in Molecular Recognition. , 2006, , 649-650.		0
58	Fatty acyl moieties: improving Pro-rich peptide uptake inside HeLa cells. Chemical Biology and Drug Design, 2005, 65, 580-590.	1.1	39
59	Amphipathic peptides and drug delivery. Biopolymers, 2004, 76, 196-203.	2.4	122