Pierluigi Debernardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031569/publications.pdf Version: 2024-02-01

1

#	Article	IF	CITATIONS
1	Surface Relief Versus Standard VCSELs: A Comparison Between Experimental and Hot-Cavity Model Results. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 828-837.	2.9	31
2	3-D Vectorial Optical Model for High-Contrast Grating Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 2013, 49, 137-145.	1.9	31
3	VENUS: A Vertical-Cavity Surface-Emitting Laser Electro-Opto-Thermal NUmerical Simulator. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	28
4	Theoretical-Experimental Study of the Vectorial Modal Properties of Polarization-Stable Multimode Grating VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1340-1348.	2.9	22
5	High-Contrast Gratings Performance Issues in Tunable VCSELs. IEEE Journal of Quantum Electronics, 2015, 51, 1-7.	1.9	20
6	HOT-VELM: A Comprehensive and Efficient Code for Fully Vectorial and 3-D Hot-Cavity VCSEL Simulation. IEEE Journal of Quantum Electronics, 2009, 45, 979-992.	1.9	19
7	Many-valley electron transport in AlGaAs VCSELs. Semiconductor Science and Technology, 2017, 32, 055007.	2.0	15
8	Bimodal Resonance Phenomena—Part I: Generalized Fabry–Pérot Interferometers. IEEE Journal of Quantum Electronics, 2016, 52, 1-8.	1.9	14
9	Electron Transport. , 2017, , 35-80.		14
10	Bimodal Resonance Phenomena—Part III: High-Contrast Grating Reflectors. IEEE Journal of Quantum Electronics, 2018, 54, 1-8.	1.9	13
11	Probing Thermal Effects in VCSELs by Experiment-Driven Multiphysics Modeling. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-14.	2.9	10
12	Analysis of Carrier Transport in Tunnel-Junction Vertical-Cavity Surface-Emitting Lasers by a Coupled Nonequilibrium Green's Function–Drift-Diffusion Approach. Physical Review Applied, 2020, 14, .	3.8	10
13	Analytical Electromagnetic Solution for Bragg Mirrors With Graded Interfaces and Guidelines for Enhanced Reflectivity. IEEE Journal of Quantum Electronics, 2007, 43, 269-274.	1.9	7
14	Bridging scales in multiphysics VCSEL modeling. Optical and Quantum Electronics, 2019, 51, 1.	3.3	4
15	Anisotropic Transverse Confinement Design for Electrically Pumped 850 nm VCSELs Tuned by an Intra Cavity Liquid-Crystal Cell. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-11.	2.9	4
16	Modulation response of VCSELs: a physics-based simulation approach. , 2020, , .		2
17	Thermal Characterization of a Nematic LiquidCrystal suited for the Fabrication of NIRSpectrally-tunable Vertical Cavity SurfaceEmitting Lasers. Optical Materials Express, 0, , .	3.0	2

Bridging scales in multiphysical VCSEL modeling., 2018,,.

#	Article	IF	CITATIONS
19	Model for ancient Greek and Roman coinage production. Journal of Archaeological Science, 2021, 131, 105406.	2.4	1
20	A multiscale approach for BTJ-VCSEL electro-optical analysis. , 2021, , .		1
21	VENUS: a comprehensive electro-thermo-opto VCSEL simulator. , 2019, , .		1
22	Some insight into "bronze quadrigati†a multi-analytical approach. Archaeological and Anthropological Sciences, 2022, 14, .	1.8	1
23	Modeling Tunnel Junctions for VCSELs: A Self-Consistent NEGF-DD Approach. , 2020, , .		0