Yanqin Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031233/publications.pdf

Version: 2024-02-01

13 papers	220 citations	7 h-index	1281871 11 g-index
13	13	13	318 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Long-Lasting Imprint in the Soluble Inflammatory Milieu Despite Early Treatment of Acute Symptomatic Hepatitis C. Journal of Infectious Diseases, 2022, 226, 441-452.	4.0	18
2	Imprint of unconventional Tâ€eell response in acute hepatitis C persists despite successful early antiviral treatment. European Journal of Immunology, 2022, 52, 472-483.	2.9	8
3	Imprint of unconventional T cell response in acute hepatitis C persists despite successful early antiviral treatment. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.5	0
4	Soluble inflammatory mediators identify HCV patients who may be cured with four weeks of antiviral treatment. Journal of Viral Hepatitis, 2022, , .	2.0	2
5	Delivery of toll-like receptor 3 ligand poly(I:C) to the liver by calcium phosphate nanoparticles conjugated with an F4/80 antibody exerts an anti-hepatitis B virus effect in a mouse model. Acta Biomaterialia, 2021, 133, 297-307.	8.3	11
6	Natural Killer Cells Regulate the Maturation of Liver Sinusoidal Endothelial Cells Thereby Promoting Intrahepatic T ell Responses in a Mouse Model. Hepatology Communications, 2021, 5, 865-881.	4.3	4
7	The impact of hepatitis B surface antigen on natural killer cells in patients with chronic hepatitis B virus infection. Liver International, 2021, 41, 2046-2058.	3.9	3
8	Simultaneous or prior activation of intrahepatic type I interferon signaling leads to hepatitis B virus persistence in a mouse model. Journal of Virology, 2021, 95, e0003421.	3.4	3
9	In Vivo Mouse Models for Hepatitis B Virus Infection and Their Application. Frontiers in Immunology, 2021, 12, 766534.	4.8	19
10	Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB Journal, 2019, 33, 8530-8542.	0.5	76
11	Local Stimulation of Liver Sinusoidal Endothelial Cells with a NOD1 Agonist Activates T Cells and Suppresses Hepatitis B Virus Replication in Mice. Journal of Immunology, 2018, 200, 3170-3179.	0.8	23
12	LSECs express functional NOD1 receptors: A role for NOD1 in LSEC maturation-induced T cell immunity in vitro. Molecular Immunology, 2018, 101, 167-175.	2.2	14
13	Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomaterialia, 2017, 64, 401-410.	8.3	39