Fei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031073/publications.pdf

Version: 2024-02-01

63	3,401	33 h-index	58
papers	citations		g-index
63	63	63	4902
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Doubleâ€Network Hydrogels. Advanced Materials, 2016, 28, 7178-7184.	21.0	492
2	Tetraâ€PEG Based Hydrogel Sealants for In Vivo Visceral Hemostasis. Advanced Materials, 2019, 31, e1901580.	21.0	208
3	Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations. ACS Applied Materials & Emp; Interfaces, 2016, 8, 12674-12683.	8.0	168
4	Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids and Surfaces B: Biointerfaces, 2016, 144, 38-45.	5.0	163
5	Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials, 2006, 27, 4923-4933.	11.4	127
6	Fabrication of pH-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery. Biomacromolecules, 2016, 17, 2920-2929.	5.4	111
7	The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials, 2011, 32, 7053-7059.	11.4	109
8	Facile Construction of pH- and Redox-Responsive Micelles from a Biodegradable Poly(\hat{l}^2 -hydroxyl amine) for Drug Delivery. Biomacromolecules, 2016, 17, 291-300.	5.4	86
9	Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin. Carbohydrate Polymers, 2016, 136, 341-349.	10.2	84
10	An injectable scaffold: rhBMP-2-loaded poly(lactide-co-glycolide)/hydroxyapatite composite microspheres. Acta Biomaterialia, 2010, 6, 455-465.	8.3	80
11	Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Science Translational Medicine, 2019, 11, .	12.4	79
12	Poly(I,I-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polymer Degradation and Stability, 2006, 91, 3065-3073.	5.8	74
13	Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Materials Science and Engineering C, 2018, 82, 60-68.	7.3	72
14	An Injectable and Instant Self-Healing Medical Adhesive for Wound Sealing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9132-9140.	8.0	72
15	Isoniazid conjugated poly(lactide-co-glycolide): Long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials, 2015, 52, 417-425.	11.4	71
16	Construction of Tough, in Situ Forming Double-Network Hydrogels with Good Biocompatibility. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2205-2212.	8.0	66
17	Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. Journal of Materials Chemistry B, 2019, 7, 2330-2337.	5.8	66
18	Fabrication of multi-stimuli responsive supramolecular hydrogels based on host–guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer. Polymer Chemistry, 2017, 8, 3901-3909.	3.9	60

#	Article	IF	CITATIONS
19	Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration. Advanced Materials, 2017, 29, 1605546.	21.0	55
20	The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections. Biomaterials Science, 2017, 5, 2337-2346.	5.4	55
21	Controlled cross-linking strategy: from hybrid hydrogels to nanoparticle macroscopic aggregates. Polymer Chemistry, 2013, 4, 4596.	3.9	54
22	Development of a Chlorantraniliprole Microcapsule Formulation with a High Loading Content and Controlled-Release Property. Journal of Agricultural and Food Chemistry, 2018, 66, 6561-6568.	5.2	54
23	A dramatic concentration effect on the stereoselectivity of N-glycosylation for the synthesis of 2′-deoxy-β-ribonucleosides. Chemical Communications, 2012, 48, 7097.	4.1	51
24	POSS dendrimers constructed from a 1 \hat{a} †' 7 branching monomer. Chemical Communications, 2014, 50, 6126.	4.1	51
25	Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomaterials Science, 2019, 7, 3238-3248.	5.4	45
26	Mesenchymal stem cells attenuated PLGA-induced inflammatory responses by inhibiting host DC maturation and function. Biomaterials, 2015, 53, 688-698.	11.4	44
27	Uniform PEGylated PLGA Microcapsules with Embedded Fe ₃ O ₄ Nanoparticles for US/MR Dual-Modality Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20460-20468.	8.0	44
28	Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. Journal of Materials Chemistry B, 2017, 5, 6110-6118.	5.8	43
29	Influence of Surface Chemistry on Adhesion and Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. ACS Biomaterials Science and Engineering, 2017, 3, 1119-1128.	5.2	42
30	Controlled Formation of Microgels/Nanogels from a Disulfide-Linked Core/Shell Hyperbranched Polymer. ACS Macro Letters, 2012, 1, 1295-1299.	4.8	39
31	Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold. Applied Surface Science, 2014, 292, 764-772.	6.1	37
32	Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging. Polymer Chemistry, 2014, 5, 1693-1701.	3.9	36
33	<scp>I</scp> nhibitory effect of superâ€hydrophobicity on silver release and antibacterial properties of superâ€hydrophobic Ag/TiO ₂ nanotubes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1004-1012.	3.4	34
34	Facile synthesis and self-assembly behaviour of pH-responsive degradable polyacetal dendrimers. Polymer Chemistry, 2016, 7, 6154-6158.	3.9	34
35	Radial shockwave treatment promotes human mesenchymal stem cell self-renewal and enhances cartilage healing. Stem Cell Research and Therapy, 2018, 9, 54.	5.5	34
36	Charge-reversible and pH-responsive biodegradable micelles and vesicles from linear-dendritic supramolecular amphiphiles for anticancer drug delivery. Polymer Chemistry, 2017, 8, 6675-6687.	3.9	32

#	Article	IF	CITATIONS
37	UV-triggered thiol–disulfide exchange reaction towards tailored biodegradable hydrogels. Polymer Chemistry, 2016, 7, 1429-1438.	3.9	31
38	pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer, 2017, 118, 75-84.	3.8	31
39	Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection. International Journal of Energy Production and Management, 2019, 6, 373-381.	3.7	31
40	Facile preparation of pH-responsive AIE-active POSS dendrimers for the detection of trivalent metal cations and acid gases. Polymer Chemistry, 2016, 7, 6432-6436.	3.9	28
41	Effect of Topological Structures on the Self-Assembly Behavior of Supramolecular Amphiphiles. Langmuir, 2015, 31, 13834-13841.	3.5	27
42	Facile Strategy on Hydrophilic Modification of Poly($\hat{l}\mu$ -caprolactone) Scaffolds for Assisting Tissue-Engineered Meniscus Constructs In Vitro. Frontiers in Pharmacology, 2020, 11, 471.	3.5	26
43	POSS-embedded supramolecular hyperbranched polymers constructed from a 1ât'7 branching monomer with controllable morphology transitions. Science China Chemistry, 2018, 61, 311-318.	8.2	24
44	Multifunctional microcapsules: A theranostic agent for US/MR/PAT multi-modality imaging and synergistic chemo-photothermal osteosarcoma therapy. Bioactive Materials, 2022, 7, 453-465.	15.6	24
45	Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioactive Materials, 2022, 16, 47-56.	15.6	24
46	Synergistic therapy of magnetism-responsive hydrogel for soft tissue injuries. Bioactive Materials, 2019, 4, 160-166.	15.6	23
47	Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy. Biomaterials Science, 2017, 5, 730-740.	5.4	22
48	POSS-modified PEG adhesives for wound closure. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rgB1	- /gverlock	₹ 10 Tf 50 30
49	Synergistic control of dual cross-linking strategy toward tailor-made hydrogels. Science China Chemistry, 2020, 63, 1793-1798.	8.2	18
50	In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly($\hat{l}\mu$ -caprolactone)-block-poly(lactic-co-glycolic acid) and \hat{l}^2 -tricalcium phosphate. Journal of Materials Chemistry B, 2015, 3, 6885-6896.	5.8	17
51	Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L Carbohydrate Research, 2010, 345, 309-314.	2.3	14
52	Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures. RSC Advances, 2016, 6, 53804-53812.	3.6	14
53	Comparison of microstructural and mechanical properties of trabeculae in femoral head from osteoporosis patients with and without cartilage lesions: a case–control study. BMC Musculoskeletal Disorders, 2015, 16, 72.	1.9	10
54	Influence of Apatite Crystallinity in Porous PLGA/Apatite Composite Scaffold on Cortical Bone Response. Journal of Hard Tissue Biology, 2009, 18, 7-12.	0.4	10

#	Article	IF	Citations
55	Construction of versatile multilayered composite nanoparticles from a customized nanogel template. Bioactive Materials, 2018, 3, 87-96.	15.6	9
56	Bioinspired self-degradable hydrogels towards wound sealing. Biomaterials Science, 2021, 9, 3645-3649.	5.4	6
57	Phase separation of polyphosphazene/poly(lactideâ€ <i>co</i> â€glycolide) blends prepared under different conditions. Polymers for Advanced Technologies, 2011, 22, 2448-2457.	3.2	5
58	Orchestrated cellular, biochemical, and biomechanical optimizations endow platelet-rich plasma-based engineered cartilage with structural and biomechanical recovery. Bioactive Materials, 2021, 6, 3824-3838.	15.6	5
59	A double-network hydrogel for the dynamic compression of the lumbar nerve root. Neural Regeneration Research, 2020, 15, 1724.	3.0	4
60	Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Advances, 2017, 7, 11439-11447.	3.6	3
61	Cortical Bone Response Towards Porous Composites of PLGA and Apatite Prepared from Calcium Complexes. Journal of Hard Tissue Biology, 2012, 21, 345-350.	0.4	3
62	Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Journal of Controlled Release, 2015, 213, e25.	9.9	2
63	An abluminal biodegradable polymer sirolimus-eluting stent versus a durable polymer everolimus-eluting stent in patients undergoing coronary revascularization: 3-year clinical outcomes of a randomized non-inferiority trial. Scientific Reports, 2019, 9, 18549.	3.3	0