Sabine Marie Podmirseg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031063/publications.pdf

Version: 2024-02-01

471061 414034 1,301 43 17 32 g-index citations h-index papers 43 43 43 1828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Science and Technology, 2013, 68, 283-289.	1.2	181
2	The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME Journal, 2013, 7, 1814-1826.	4.4	132
3	Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Applied Soil Ecology, 2011, 49, 18-25.	2.1	112
4	Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys, 0, 9, 11-28.	0.8	95
5	Expanding DEMON Sidestream Deammonification Technology Towards Mainstream Application. Water Environment Research, 2015, 87, 2084-2089.	1.3	93
6	Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology and Biochemistry, 2009, 41, 2299-2307.	4.2	92
7	The use of extracellular DNA as a proxy for specific microbial activity. Applied Microbiology and Biotechnology, 2018, 102, 2885-2898.	1.7	45
8	Finding a robust strain for biomethanation: Anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe, 2014, 29, 34-43.	1.0	44
9	Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45†°C. Bioresource Technology, 2018, 269, 309-318.	4.8	43
10	A novel fixed fibre biofilm membrane process for onâ€site greywater reclamation requiring no fouling control. Biotechnology and Bioengineering, 2015, 112, 484-493.	1.7	41
11	Comparative evaluation of multiple methods to quantify and characterise granular anammox biomass. Water Research, 2015, 68, 194-205.	5. 3	37
12	Anaerobic Fungi and Their Potential for Biogas Production. Advances in Biochemical Engineering/Biotechnology, 2015, 151, 41-61.	0.6	35
13	Microbiota in anaerobic digestion of sewage sludge with and without coâ€substrates. Water and Environment Journal, 2019, 33, 214-222.	1.0	34
14	Employing anaerobic fungi in biogas production: challenges & amp; opportunities. Bioresource Technology, 2020, 300, 122687.	4.8	34
15	Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. Journal of Biotechnology, 2019, 300, 1-10.	1.9	29
16	Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. Industrial Crops and Products, 2020, 145, 112099.	2.5	24
17	Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia, 2009, 52, 325-336.	0.5	22
18	Application of denaturing gradient gel electrophoresis for analysing the gut microflora of <i>Lumbricus rubellus </i> Hoffmeister under different feeding conditions. Bulletin of Entomological Research, 2008, 98, 271-279.	0.5	21

#	Article	IF	CITATIONS
19	Wood ash amendment to biogas reactors as an alternative to landfilling? A preliminary study on changes in process chemistry and biology. Waste Management and Research, 2013, 31, 829-842.	2.2	20
20	Robustness of the autochthonous microbial soil community after amendment of cattle manure or its digestate. Biology and Fertility of Soils, 2019, 55, 565-576.	2.3	18
21	Trace metals supplementation enhanced microbiota and biohythane production by two-stage thermophilic fermentation. International Journal of Hydrogen Energy, 2019, 44, 3325-3338.	3.8	17
22	Biomethanation at 45°C offers high process efficiency and supports hygienisation. Bioresource Technology, 2020, 300, 122671.	4.8	17
23	The masking effect of extracellular DNA and robustness of intracellular DNA in anaerobic digester NGS studies: A discriminatory study of the total DNA pool. Molecular Ecology, 2021, 30, 438-450.	2.0	17
24	The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms, 2021, 9, 157.	1.6	17
25	Why <scp>eDNA</scp> fractions need consideration in biomonitoring. Molecular Ecology Resources, 2022, 22, 2458-2470.	2.2	16
26	CoMA – an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. PLoS ONE, 2020, 15, e0243241.	1.1	15
27	Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification. Water Research, 2022, 218, 118517 .	5.3	12
28	Quantitative and qualitative effects of bioaugmentation on ammonia oxidisers at a two-step WWTP. Water Science and Technology, 2010, 61, 1003-1009.	1.2	10
29	Soil microbiota along Ayoloco glacier retreat area of IztaccÃhuatl volcano, Mexico. Catena, 2017, 153, 83-88.	2.2	8
30	Biological waste treatment. Waste Management and Research, 2013, 31, 773-774.	2.2	7
31	Quantities of Intra- and Extracellular DNA Reveal Information About Activity and Physiological State of Methanogenic Archaea. Frontiers in Microbiology, 2020, 11, 1894.	1.5	5
32	The effect of maize silage as co-substrate for swine manure on the bacterial community structure in biogas plants. Folia Microbiologica, 2012, 57, 281-284.	1.1	4
33	Prokaryotic Community Dynamics during the Start-Up of a Full-Scale BIO4GAS Digester. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	4
34	No oxygen-still vigorous: 8th International Symposium on Anaerobic Microbiology (ISAM 8) Innsbruck, Austria. Anaerobe, 2014, 29, 1-2.	1.0	0
35	CoMA $\hat{a}\in$ an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		O
36	CoMA – an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		0

#	Article	IF	CITATIONS
37	CoMA $\hat{a} \in \text{``}$ an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		O
38	CoMA $\hat{a} \in \text{``an intuitive and user-friendly pipeline for amplicon-sequencing data analysis.}, 2020, 15, e0243241.$		0
39	CoMA – an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		O
40	CoMA $\hat{a} \in \hat{a}$ an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		0
41	CoMA – an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		O
42	CoMA $\hat{a} \in \hat{a}$ an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		0
43	CoMA – an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. , 2020, 15, e0243241.		0