List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning sequence prioritization for cell type-specific enhancer design. ELife, 2022, 11, .	2.8	10
2	Cell type specific cannabinoid CB1 receptor distribution across the human and non-human primate cortex. Scientific Reports, 2022, 12, .	1.6	6
3	Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex. Neuroscience, 2021, 452, 181-191.	1.1	5
4	Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cerebral Cortex, 2021, 31, 2345-2363.	1.6	11
5	Vesicular glutamate transporter modulates sex differences in dopamine neuron vulnerability to ageâ€related neurodegeneration. Aging Cell, 2021, 20, e13365.	3.0	20
6	VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. Journal of Neuroscience, 2021, 41, 4937-4947.	1.7	17
7	Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biological Psychiatry, 2021, 90, 47-57.	0.7	16
8	Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Current Biology, 2021, 31, 5473-5486.e6.	1.8	27
9	GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy. Journal of Neurophysiology, 2020, 123, 392-406.	0.9	18
10	Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Science Advances, 2020, 6, eaay9572.	4.7	42
11	Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. Journal of Neuroscience, 2019, 39, 7277-7290.	1.7	37
12	T50. Laminar and Cellular Developmental Trajectories of GABA Transcripts in Cortical Regions of the Visuospatial Working Memory Network in Monkeys. Biological Psychiatry, 2019, 85, S148.	0.7	0
13	MAP2 immunoreactivity deficit is conserved across the cerebral cortex within individuals with schizophrenia, 2019, 5, 13.	2.0	10
14	Density of small dendritic spines and microtubule-associated-protein-2 immunoreactivity in the primary auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 2019, 44, 1055-1061.	2.8	27
15	3.63 Developmental Trajectories of Gaba Receptor Subunits in Layer 3 Pyramidal and Gaba Neurons in Monkey Visual and Prefrontal Cortices. Journal of the American Academy of Child and Adolescent Psychiatry, 2018, 57, S202.	0.3	0
16	T201. Altered Parvalbumin-Expressing Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biological Psychiatry, 2018, 83, S206.	0.7	0
17	Laminar Distribution of Subsets of GABAergic Axon Terminals in Human Prefrontal Cortex. Frontiers in Neuroanatomy, 2018, 12, 9.	0.9	22
18	Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E629-E637.	3.3	38

#	Article	IF	CITATIONS
19	Loss of precuneus dendritic spines immunopositive for spinophilin is related to cognitive impairment in early Alzheimer's disease. Neurobiology of Aging, 2017, 55, 159-166.	1.5	28
20	Selective Loss of Smaller Spines in Schizophrenia. American Journal of Psychiatry, 2017, 174, 586-594.	4.0	103
21	Alterations in a Unique Class of Cortical Chandelier Cell Axon Cartridges in Schizophrenia. Biological Psychiatry, 2017, 82, 40-48.	0.7	33
22	Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 396-405.	2.3	17
23	Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia. American Journal of Psychiatry, 2016, 173, 1131-1139.	4.0	124
24	Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia. Biological Psychiatry, 2016, 79, 1006-1015.	0.7	45
25	Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia. Neuropsychopharmacology, 2016, 41, 2206-2214.	2.8	180
26	GABA-Synthesizing Enzymes in Calbindin and Calretinin Neurons in Monkey Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2191-2204.	1.6	30
27	Developmental Trajectories of Auditory Cortex Synaptic Structures and Gap-Prepulse Inhibition of Acoustic Startle Between Early Adolescence and Young Adulthood in Mice. Cerebral Cortex, 2016, 26, 2115-2126.	1.6	17
28	Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia. Biological Psychiatry, 2015, 78, 374-385.	0.7	89
29	Lower Glutamic Acid Decarboxylase 65-kDa Isoform Messenger RNA and Protein Levels in the Prefrontal Cortex in Schizoaffective Disorder but Not Schizophrenia. Biological Psychiatry, 2015, 77, 167-176.	0.7	43
30	Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2015, 25, 4076-4093.	1.6	61
31	Quantification of Immunocytochemical Colocalization in Neurons. Neuromethods, 2015, , 257-279.	0.2	0
32	Hyperphosphorylated Tau is Elevated in Alzheimer's Disease with Psychosis. Journal of Alzheimer's Disease, 2014, 39, 759-773.	1.2	46
33	Tau phosphorylation is exaggerated in Alzheimer disease with psychosis. American Journal of Geriatric Psychiatry, 2013, 21, S80-S81.	0.6	6
34	Intracortical excitatory and thalamocortical boutons are intact in primary auditory cortex in schizophrenia. Schizophrenia Research, 2013, 149, 127-134.	1.1	23
35	Parvalbumin-Containing Chandelier and Basket Cell Boutons Have Distinctive Modes of Maturation in Monkey Prefrontal Cortex. Journal of Neuroscience, 2013, 33, 8352-8358.	1.7	55
36	Dendritic Spine Density, Morphology, and Fibrillar Actin Content Surrounding Amyloid-β Plaques in a Mouse Model of Amyloid-β Deposition. Journal of Neuropathology and Experimental Neurology, 2013, 72, 791-800.	0.9	33

#	Article	IF	CITATIONS
37	Histological Characterization of Physiologically Determined Fast-Spiking Interneurons in Slices of Primate Dorsolateral Prefrontal Cortex. Neuromethods, 2012, , 159-181.	0.2	4
38	Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia. Biological Psychiatry, 2012, 72, 734-743.	0.7	40
39	Conserved Interneuron-Specific ErbB4 Expression in Frontal Cortex of Rodents, Monkeys, and Humans: Implications for Schizophrenia. Biological Psychiatry, 2011, 70, 636-645.	0.7	77
40	Perisomatic inhibition and cortical circuit dysfunction in schizophrenia. Current Opinion in Neurobiology, 2011, 21, 866-872.	2.0	81
41	Cortical Deficits of Glutamic Acid Decarboxylase 67 Expression in Schizophrenia: Clinical, Protein, and Cell Type-Specific Features. American Journal of Psychiatry, 2011, 168, 921-929.	4.0	237
42	GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia. Neural Plasticity, 2011, 2011, 1-24.	1.0	193
43	Differential Distribution of Proteins Regulating GABA Synthesis and Reuptake in Axon Boutons of Subpopulations of Cortical Interneurons. Cerebral Cortex, 2011, 21, 2450-2460.	1.6	45
44	Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia. Frontiers in Human Neuroscience, 2010, 4, 44.	1.0	27
45	Total Internal Reflection Fluorescence (TIRF) Microscopy. Current Protocols in Cytometry, 2009, 50, Unit12.18.	3.7	127
46	Interneuron Diversity in Layers 2–3 of Monkey Prefrontal Cortex. Cerebral Cortex, 2009, 19, 1597-1615.	1.6	117
47	Selective Targeting of ER Exit Sites Supports Axon Development. Traffic, 2009, 10, 1669-1684.	1.3	49
48	Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. European Journal of Neuroscience, 2008, 27, 2568-2574.	1.2	52
49	An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Research, 2008, 1240, 62-72.	1.1	40
50	Functional consequences of hippocampal neuronal ectopia in the apolipoprotein E receptor-2 knockout mouse. Neurobiology of Disease, 2008, 32, 391-401.	2.1	4
51	YKL-40, a Marker of Simian Immunodeficiency Virus Encephalitis, Modulates the Biological Activity of Basic Fibroblast Growth Factor. American Journal of Pathology, 2008, 173, 130-143.	1.9	119
52	Altered performance of reelin-receptor ApoER2 deficient mice on spatial tasks using the Barnes maze Behavioral Neuroscience, 2007, 121, 1101-1105.	0.6	15
53	The reelin receptors VLDLR and ApoER2 regulate sensorimotor gating in mice. Neuropharmacology, 2007, 52, 1114-1123.	2.0	23
54	Hippocampal dendritic arbor growth in vitro: Regulation by Reelin–Disabled-1 signaling. Brain Research, 2007, 1172, 1-9.	1.1	29

#	Article	IF	CITATIONS
55	Endoplasmic Reticulum Export Site Formation and Function in Dendrites. Journal of Neuroscience, 2004, 24, 3770-3776.	1.7	85
56	Retrieval of Human Cytomegalovirus Glycoprotein B from Cell Surface Is Not Required for Virus Envelopment in Astrocytoma Cells. Journal of Virology, 2002, 76, 5147-5155.	1.5	32
57	The Sar1 Gtpase Coordinates Biosynthetic Cargo Selection with Endoplasmic Reticulum Export Site Assembly. Journal of Cell Biology, 2001, 152, 213-230.	2.3	223
58	Reactivation of Latent Human Cytomegalovirus in CD14 + Monocytes Is Differentiation Dependent. Journal of Virology, 2001, 75, 7543-7554.	1.5	208
59	Traffic Pattern of Cystic Fibrosis Transmembrane Regulator through the Early Exocytic Pathway. Traffic, 2000, 1, 852-870.	1.3	55
60	Evidence That Dynamin-2 Functions as a Signal-Transducing Gtpase. Journal of Cell Biology, 2000, 150, 145-154.	2.3	103
61	Long-Term Infection and Transformation of Dermal Microvascular Endothelial Cells by Human Herpesvirus 8. Journal of Virology, 1999, 73, 6892-6902.	1.5	217
62	Growth of Human Cytomegalovirus in Primary Macrophages. Methods, 1998, 16, 126-138.	1.9	35
63	Human Cytomegalovirus Persistently Infects Aortic Endothelial Cells. Journal of Virology, 1998, 72, 5661-5668.	1.5	119
64	Steady-State Plasma Membrane Expression of Human Cytomegalovirus gB Is Determined by the Phosphorylation State of Ser ₉₀₀ . Journal of Virology, 1998, 72, 6657-6664.	1.5	47
65	Reactivation of Latent Human Cytomegalovirus by Allogeneic Stimulation of Blood Cells from Healthy Donors. Cell, 1997, 91, 119-126.	13.5	645