Jing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030502/publications.pdf

Version: 2024-02-01

		516710	243625
54	1,924	16	44
papers	citations	h-index	g-index
54	54	54	3395
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	19.5	817
2	Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7862.	10.3	226
3	High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sensors and Actuators B: Chemical, 2016, 226, 478-485.	7.8	215
4	Effects of PbO Content on the Dielectric Properties and Energy Storage Performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 Antiferroelectric Thin Films. Journal of the American Ceramic Society, 2011, 94, 1647-1650.	3.8	60
5	A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Nanoscale, 2016, 8, 5146-5152.	5.6	54
6	Electromechanical Properties and Morphotropic Phase Boundary of NaO.5BiO.5TiO3-KO.5BiO.5TiO3-BaTiO3 Lead-free Piezoelectric Ceramics. Journal of Electroceramics, 2005, 15, 229-235.	2.0	50
7	Alkyl Chain Tuning of Non-fullerene Electron Acceptors toward 18.2% Efficiency Binary Organic Solar Cells. Chemistry of Materials, 2021, 33, 8854-8862.	6.7	50
8	Surface modification of BMN particles with silane coupling agent for composites with PTFE. Applied Surface Science, 2017, 414, 147-152.	6.1	41
9	Size-Dependent Synthesis of Cu ₁₂ Sb ₄ S ₁₃ Nanocrystals with Bandgap Tunability. Particle and Particle Systems Characterization, 2015, 32, 999-1005.	2.3	35
10	Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3Lead-Free Ceramics. Journal of Electroceramics, 2005, 14, 53-58.	2.0	34
11	Mesoporous Carbon Nanofibers Embedded with MoS ₂ Nanocrystals for Extraordinary Li″on Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	3.3	25
12	Enhanced piezoelectric property and promoted depolarization temperature in Fe doped Bi1/2(Na0.8K0.2)1/2TiO3 lead-free ceramics. Ceramics International, 2017, 43, 16395-16402.	4.8	25
13	Effect of filler structure on the dielectric and thermal properties of SiO2/PTFE composites. Journal of Materials Science: Materials in Electronics, 2020, 31, 9196-9202.	2.2	23
14	Synthesis of Bi2Fe4O9/reduced graphene oxide composite by one-step hydrothermal method and its high photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2014, 25, 4212-4218.	2.2	20
15	Boosting the Electrochemical Performance of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ by Rough Coating with the Superionic Conductor Li _{La₂La₂Coating National States of Conductor And States of Conductor National States of Conductor National}	8.0	20
16	2021, 13, 54916-54923. Synthesis of (Na0.5Bi0.5)TiO3 and (Na0.5Bi0.5)0.92Ba0.08TiO3 powders by a citrate method. Journal of Materials Science, 2006, 41, 6146-6149.	3.7	16
17	Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer. Applied Surface Science, 2016, 388, 579-583.	6.1	14
18	The dielectric properties and dielectric mechanism of perovskite ceramic CLST/PTFE composites. Journal of Materials Science: Materials in Electronics, 2017, 28, 11665-11670.	2.2	13

#	Article	IF	Citations
19	Effects of residual stress on the electrical properties in PbZr0.52Ti0.48O3 thin films. Journal of Sol-Gel Science and Technology, 2015, 75, 551-556.	2.4	12
20	Stabilization of Ferroelectric Order in $Bi1/2$ (Na0.8K0.2)1/2TiO3 Lead-Free Ceramics with Fe Doping. Journal of Electronic Materials, 2017, 46, 6167-6174.	2.2	12
21	Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics. Journal of Electroceramics, 2020, 44, 95-103.	2.0	12
22	Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application. Journal of Materials Science: Materials in Electronics, 2022, 33, 10096-10103.	2.2	11
23	Relaxor behavior and ferroelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-KNbO3 lead-free ceramics. Journal of Materials Science, 2005, 40, 3625-3628.	3.7	10
24	Enhancing high-frequency dielectric and mechanical properties of SiO2/PTFE composites from the interface fluorination. Ceramics International, 2022, 48, 28512-28518.	4.8	10
25	Effects on the thermal expansion coefficient and dielectric properties of CLST/PTFE filled with modified glass fiber as microwave material. Chinese Chemical Letters, 2019, 30, 1111-1114.	9.0	9
26	Detection of residual stress in Ba(Mg1/3Ta2/3)O3 thin films by nanoindentation technique. Ceramics International, 2015, 41, $11632-11636$.	4.8	7
27	TEOS surface modification of CLST ceramic particles for PTFE-based composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 17195-17200.	2.2	7
28	Direct measurement of electric field-induced strains of a single lead zirconate titanate piezoelectric ceramic fibre under various conditions. Ceramics International, 2015, 41, 1657-1662.	4.8	6
29	Morphologies controllable synthesis of MoS2 by hot-injection method: from quantum dots to nanosheets. Journal of Materials Science: Materials in Electronics, 2017, 28, 13633-13637.	2.2	6
30	Photoluminescence properties of NUV light excited Ba(Mg1/3Nb2/3)O3:Eu3+ red phosphor with high color purity. Ceramics International, 2019, 45, 11844-11849.	4.8	6
31	Density Functional Investigation on \hat{l}_{\pm} -MoO ₃ (100): Amines Adsorption and Surface Chemistry. ACS Sensors, 2022, 7, 1213-1221.	7.8	6
32	Effect of heterogeneous interface on the microwave dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 thin films. Applied Surface Science, 2012, 259, 29-33.	6.1	5
33	Effects of Ba(Mg1/3Ta2/3)O3 buffer layer on the fatigue behavior in Pb(Zr0.52Ti0.48)O3 thin films. Journal of Sol-Gel Science and Technology, 2015, 74, 234-239.	2.4	5
34	Aqueous Solution–Gel Preparation and Dielectric Properties of Ba(Mg _{1/3} Nb _{2/3})O ₃ Thin Films with Longâ€Range Order. Journal of the American Ceramic Society, 2015, 98, 873-878.	3.8	5
35	3D microstructures with MoO2 nanocrystallines embedded into interpenetrated carbon nanosheets for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11521-11528.	2.2	5
36	Electric field-temperature phase diagram of Bi1/2(Na0.8K0.2)1/2TiO3 relaxor ferroelectrics with Fe doping. Journal of Applied Physics, 2019, 126, .	2.5	5

#	Article	IF	Citations
37	Sodium-Ion Batteries: Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3Cathode for Room-Temperature Sodium-Ion Batteries (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 138-138.	19.5	4
38	Square cross-section piezoelectric fiber composites: structure and ferroelectric properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 3033-3038.	2.2	4
39	Tristate ferroelectric memory and strain memory in Bi1/2Na1/2TiO3-based relaxor ferroelectrics. Applied Physics Letters, 2018, 113, .	3.3	4
40	Effect of Ba(Mg1/3Nb2/3)O3 buffer layer on electrical properties of PZT-based films. Journal of Materials Science: Materials in Electronics, 2020, 31, 9928-9936.	2.2	4
41	High-field nonlinear properties and characteristics of domain wall motion in Fe ₂ O ₃ doped PMnS-PZN-PZT ceramics. Ferroelectrics, 2020, 560, 110-122.	0.6	4
42	The surface residual stress of monocrystalline silicon in ultrasonic vibration–assisted diamond wire sawing. International Journal of Advanced Manufacturing Technology, 2022, 121, 3079-3091.	3.0	4
43	Thermal and Mechanical Properties of Epoxy Resin Modified with N-(4-hydroxyphenyl)terahydrophthalic Anhydrideimide. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 744-748.	1.0	3
44	Resistive-switching tunability with size-dependent all-inorganic zero-dimensional tetrahedrite quantum dots. Science China Materials, 2020, 63, 2497-2508.	6.3	3
45	The electrochemical property and crystal structure of Li1+xNi0.45Co0.1Mn0.45O2 (0.05â‰ x â‰ 6 .4) cathode materials under 4.6V cut-off. Journal of Alloys and Compounds, 2020, 831, 154489.	5.5	3
46	Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT piezoelectric ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
47	Effects of interface number on the temperature and frequency dependence of the properties of Pb(Zr0.52Ti0.48)O3/Ba(Mg1/3Ta2/3)O3 thin films. Thin Solid Films, 2018, 652, 23-27.	1.8	2
48	Tailoring large magnetoresistance in Dirac semimetal SrlrO3 films. Applied Physics Letters, 2021, 119, .	3.3	2
49	Preparation and Electrical Properties of Piezoelectric-Embedded Asphalt Mixture. Journal of Testing and Evaluation, 2014, 42, 1119-1126.	0.7	2
50	Size-controlled resistive switching performance and regulation mechanism of SnO ₂ QDs. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 197301.	0.5	2
51	The effect of stacking sequence and thickness on the structure and microwave dielectric properties of heterogenous Ca(Mg1/3Ta2/3)O3/CaTiO3 thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 7361-7366.	2.2	1
52	Ca(Mg1/3Ta2/3)O3 dielectric thin films: preparation, structure, mechanical and dielectric properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 9391-9397.	2.2	1
53	Study on the interface coupling effect in PbZr0.52Ti0.48O3/Ba(Mg1/3Ta2/3)O3 thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 14490-14494.	2.2	1
54	Polar-discontinuity-induced stability of spontaneous polarization in ultrathin perovskite films. Ceramics International, 2020, 46, 26698-26704.	4.8	0