Raghvendra Singh Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030157/publications.pdf

Version: 2024-02-01

73 papers 2,881 citations

147566 31 h-index 53 g-index

77 all docs

77 docs citations

77 times ranked

3553 citing authors

#	Article	IF	CITATIONS
1	Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2011, 2, 313-317.	0.3	201
2	Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe ₂ O ₄ nanoparticles synthesized by honey mediated sol-gel combustion method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 045002.	0.7	152
3	Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. Journal of Physics and Chemistry of Solids, 2017, 107, 150-161.	1.9	147
4	Application of ZnO nanoparticles in influencing the growth rate of <i>Cicer arietinum </i> Liverimental Nanoscience, 2010, 5, 488-497.	1.3	139
5	Impact of Nd3+ in CoFe2O4Âspinel ferrite nanoparticles on cation distribution, structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2016, 399, 109-117.	1.0	137
6	Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrasonics Sonochemistry, 2008, 15, 863-868.	3.8	134
7	Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrasonics Sonochemistry, 2018, 40, 773-783.	3.8	127
8	Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-electronics Review, 2010, 18 , .	2.4	119
9	Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. Journal of Physics and Chemistry of Solids, 2017, 110, 87-99.	1.9	117
10	Magnetic properties of Co 1â^'x Zn x Fe 2 O 4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 2015, 378, 190-199.	1.0	113
11	Improved color purity in nano-size Eu3+-doped YBO3 red phosphor. Journal of Luminescence, 2009, 129, 1078-1082.	1.5	7 5
12	Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered $Co1\hat{a}^{\circ}$ xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 447, 48-57.	1.0	73
13	Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. Nanomaterials, 2019, 9, 621.	1.9	68
14	Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method. Ultrasonics Sonochemistry, 2010, 17, 560-565.	3.8	66
15	Growth mechanism and optical property of CdS nanoparticles synthesized using amino-acid histidine as chelating agent under sonochemical process. Ultrasonics Sonochemistry, 2010, 17, 116-122.	3.8	64
16	Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. Journal of Hazardous Materials, 2012, 213-214, 161-166.	6.5	62
17	Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 2015, 394, 439-447.	1.0	61
18	Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application. Composites Part B: Engineering, 2019, 166, 95-111.	5.9	59

#	Article	IF	Citations
19	Structural, photoconductivity and photoluminescence characterization of cadmium sulfide quantum dots prepared by a co-precipitation method. Electronic Materials Letters, 2011, 7, 31-38.	1.0	57
20	Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrasonics Sonochemistry, 2020, 61, 104839.	3.8	57
21	Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. Journal of Thermal Analysis and Calorimetry, 2012, 110, 573-580.	2.0	56
22	Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. Journal of Materials Science: Materials in Electronics, 2017, 28, 6245-6261.	1.1	43
23	Preparation, characterization, and optical properties of a chitosan–anthraldehyde crosslinkable film. Journal of Applied Polymer Science, 2010, 115, 3056-3062.	1.3	42
24	NiFe ₂ O ₄ Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol–Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega, 2019, 4, 22069-22081.	1.6	42
25	Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property. Journal of Superconductivity and Novel Magnetism, 2016, 29, 759-769.	0.8	41
26	A new class of PANI–Ag core–shell nanorods with sensing dimensions. Nanoscale, 2012, 4, 3886.	2.8	40
27	Structural, optical and photoconductivity characteristics of manganese doped cadmium sulfide nanoparticles synthesized by co-precipitation method. Journal of Alloys and Compounds, 2012, 513, 118-124.	2.8	37
28	Bandgap engineering of colloidal zinc oxysulfide via lattice substitution with sulfur. Nanoscale, 2014, 6, 1602-1606.	2.8	35
29	BaAl12O19:Mn2+ green emitting nanophosphor for PDP application synthesized by solution combustion method and its Vacuum Ultra-Violet Photoluminescence Characteristics. Journal of Luminescence, 2011, 131, 1998-2003.	1.5	34
30	Structural, Cation Distribution, and Magnetic Properties of CoFe2O4 Spinel Ferrite Nanoparticles Synthesized Using a Starch-Assisted Sol–Gel Auto-Combustion Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1851-1861.	0.8	34
31	Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. Journal of Materials Science: Materials in Electronics, 2016, 27, 5992-6002.	1.1	32
32	Magnetic Properties of Dysprosium-Doped Cobalt Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-combustion Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2097-2107.	0.8	30
33	Magnetic Properties of ZnFe2O4 Nanoparticles Synthesized by Starch-Assisted Sol–Gel Auto-combustion Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1417-1423.	0.8	30
34	Towards improved efficiency of bulk-heterojunction solar cells using various spinel ferrite magnetic nanoparticles. Organic Electronics, 2016, 39, 118-126.	1.4	29
35	Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates. Materials Chemistry and Physics, 2019, 237, 121823.	2.0	28
36	Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2â°xLaxO4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 9139-9154.	1.1	27

#	Article	IF	Citations
37	Enhanced efficiency in quantum confined YBO3:Tb3+ nanophosphor. Journal of Alloys and Compounds, 2010, 494, L15-L19.	2.8	22
38	High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn ²⁺ -Substituted CoFe ₂ O ₄ Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS Omega, 2021, 6, 28098-28118.	1.6	22
39	ZnO porous structures synthesized by CTAB-assisted hydrothermal process. Structural Chemistry, 2007, 18, 1001-1004.	1.0	20
40	Enhanced blue luminescence in BaMgAl10O17:Eu, Er, Nd nanophosphor for PDPs and Mercury free fluorescent lamps. Journal of Alloys and Compounds, 2013, 547, 1-4.	2.8	18
41	Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxide. Nanomaterials, 2020, 10, 2481.	1.9	17
42	Needle-like ZnO nanostructure synthesized by organic-free hydrothermal process. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 660-663.	1.3	15
43	Micro-Raman and photoluminescence study of urchin-like ZnO structure assembled with nanorods synthesized by hydrothermal method. Structural Chemistry, 2009, 20, 1093-1097.	1.0	13
44	Formation of ZnO@Cd(OH)2 core-shell nanoparticles by sol–gel method: An approach to modify surface chemistry for stable and enhanced green emission. Journal of Luminescence, 2010, 130, 365-373.	1.5	13
45	CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding. International Journal of Molecular Sciences, 2022, 23, 2610.	1.8	13
46	Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 15878-15893.	1.1	12
47	Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application. Nanomaterials, 2021, 11, 1112.	1.9	11
48	Particle size distribution study by small-angle X-ray scattering technique and photoluminescence property of ZnO nanoparticles. Journal of Experimental Nanoscience, 2009, 4, 139-146.	1.3	10
49	Effect of Pr 3 + Substitution on Structural and Magnetic Properties of CoFe 2 O 4 Spinel Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2015, 28, 241-248.	0.8	10
50	Controlled growth of flower-like, rod-like, and snowflake-like ZnO nanostructures using agarose as biotemplate and its photoluminescence property. Structural Chemistry, 2011, 22, 1281-1286.	1.0	9
51	Structural and Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by Starch-Assisted Sol–Gel Auto-Combustion Method in Air, Argon, Nitrogen and Vacuum Atmospheres. Journal of Superconductivity and Novel Magnetism, 2015, 28, 249-258.	0.8	9
52	Small angle X-ray scattering and photoluminescence study of ZnO nanoparticles synthesized by hydrothermal process. Journal of Experimental Nanoscience, 2007, 2, 177-182.	1.3	8
53	Tuning the band gap of ZnO nanoparticles by ultrasonic irradiation. Inorganic Materials, 2010, 46, 163-167.	0.2	8
54	Structural and Magnetic Properties of CoFe2â^'x Gd x O4 (0.0 â‰\ â‰\ 0.1) Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Solâ€"Gel Auto-combustion Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1797-1806.	0.8	7

#	Article	IF	Citations
55	Spinel ferrite and MXene-based magnetic novel nanocomposites: an innovative high-performance electromagnetic interference shielding and microwave absorber. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 441-479.	6.8	6
56	Hydrothermal synthesis and optical study of bunches of ZnO nanowires. Structural Chemistry, 2009, 20, 847-850.	1.0	5
57	Histidine functionalised biocompatible CdS quantum dots synthesised by sonochemical method. Journal of Experimental Nanoscience, 2010, 5, 348-356.	1.3	5
58	Synthesis Of Lamellar Porous Photocatalytic Nano ZnO With The Help Of anionic Surfactant. Advanced Materials Letters, 2013, 4, 378-384.	0.3	5
59	Multifunctional Nanomaterials: Synthesis, Properties and Applications. International Journal of Molecular Sciences, 2021, 22, 12073.	1.8	5
60	Photoconductivity, dark-conductivity and photoluminescence study of hydrothermally synthesized ZnO nanoparticles., 2009,,.		4
61	Study of Structural and Optoelectronic Properties of ZnO Codoped with Ca and Mg. Indian Journal of Materials Science, 2013, 2013, 1-6.	0.6	3
62	Spinel ferrite nanoparticles. , 2021, , 43-76.		2
63	Hydration of Synthetized Clinker Phases C ₃ S and C ₃ A with Metakaolin in Isothermal Conditions. Advanced Materials Research, 2015, 1124, 23-30.	0.3	1
64	ZnO nanoparticle synthesis in presence of biocompatible carbohydrate starch. , 2009, , .		0
65	Glass-based nanocomposites., 2021,, 137-149.		O
66	Summary and future prospectives. , 2021, , 185-188.		O
67	Rubber-based nanocomposites. , 2021, , 151-160.		0
68	Spinel soft ferrite-hexagonal ferrite nanocomposites. , 2021, , 125-135.		0
69	Polymer-based nanocomposites. , 2021, , 77-91.		O
70	Cement/concrete-based nanocomposites. , 2021, , 175-183.		0
71	Fabric/textile/wood-based nanocomposites. , 2021, , 161-173.		O
72	Spinel ferrite nanocomposites formation and characterization., 2021,, 21-42.		0

ARTICLE IF CITATIONS

73 Metal, metal oxide, and carbon-based nanocomposites., 2021, , 93-123. o