Taylor Maavara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802971/publications.pdf

Version: 2024-02-01

21 papers

2,433 citations

686830 13 h-index 752256 20 g-index

24 all docs

24 docs citations

times ranked

24

2822 citing authors

#	Article	IF	Citations
1	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	13.7	814
2	River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 2020, 1, 103-116.	12.2	372
3	Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15603-15608.	3.3	322
4	Global perturbation of organic carbon cycling by river damming. Nature Communications, 2017, 8, 15347.	5.8	246
5	Nitrous oxide emissions from inland waters: Are IPCC estimates too high?. Global Change Biology, 2019, 25, 473-488.	4.2	119
6	Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrology and Hydrobiology, 2016, 16, 106-111.	1.0	107
7	Rivers as the largest source of mercury to coastal oceans worldwide. Nature Geoscience, 2021, 14, 672-677.	5.4	107
8	Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate. Global Biogeochemical Cycles, 2014, 28, 842-855.	1.9	85
9	Effects of Damming on River Nitrogen Fluxes: A Global Analysis. Global Biogeochemical Cycles, 2019, 33, 1339-1357.	1.9	53
10	Global Damâ€Driven Changes to Riverine N:P:Si Ratios Delivered to the Coastal Ocean. Geophysical Research Letters, 2020, 47, e2020GL088288.	1.5	52
11	Natural Lakes Are a Minor Global Source of N ₂ O to the Atmosphere. Global Biogeochemical Cycles, 2019, 33, 1564-1581.	1.9	40
12	Hysteresis Patterns of Watershed Nitrogen Retention and Loss Over the Past 50Âyears in United States Hydrological Basins. Global Biogeochemical Cycles, 2021, 35, e2020GB006777.	1.9	29
13	Reactive silicon dynamics in a large prairie reservoir (Lake Diefenbaker, Saskatchewan). Journal of Great Lakes Research, 2015, 41, 100-109.	0.8	23
14	Does Photomineralization of Dissolved Organics Matter in Temperate Rivers?. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006402.	1.3	11
15	Lake Morphometry and River Network Controls on Evasion of Terrestrially Sourced Headwater CO 2. Geophysical Research Letters, 2021, 48, .	1.5	11
16	Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis. Global Biogeochemical Cycles, 2022, 36, .	1.9	11
17	Modeling geogenic and atmospheric nitrogen through the East River Watershed, Colorado Rocky Mountains. PLoS ONE, 2021, 16, e0247907.	1.1	9
18	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	1.5	7

TAYLOR MAAVARA

#	Article	IF	CITATIONS
19	Effects of pH and Dissolved Silicate on Phosphate Mineral-Water Partitioning with Goethite. ACS Earth and Space Chemistry, 2022, 6, 34-43.	1.2	7
20	The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie. Science of the Total Environment, 2018, 622-623, 814-824.	3.9	5
21	Editorial: Riverine Biogeochemistry Under Increasing Damming: Processes and Impacts. Frontiers in Environmental Science, 2022, 10, .	1.5	1