Carmen FernÃ;ndez-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8029707/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of bisphenol A by activated carbon developed from PET waste by KOH activation. Environmental Science and Pollution Research, 2021, 28, 24342-24354.	2.7	27
2	Surface morphological characterization of activated carbon-metal (hydr)oxide composites: some insights into the role of the precursor chemistry in aqueous solution. Journal of Dispersion Science and Technology, 2020, 41, 1743-1753.	1.3	2
3	Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland), 2020, 12, 102.	1.2	381
4	Activated carbon surface chemistry: Changes upon impregnation with Al(III), Fe(III) and Zn(II)-metal oxide catalyst precursors from NO3â^ aqueous solutions. Arabian Journal of Chemistry, 2019, 12, 3963-3976.	2.3	34
5	Activated carbon from cherry stones by chemical activation: Influence of the impregnation method on porous structure. Journal of Wood Chemistry and Technology, 2017, 37, 148-162.	0.9	11
6	Particle size distribution and morphological changes in activated carbonâ€metal oxide hybrid catalysts prepared under different heating conditions. Journal of Microscopy, 2016, 261, 227-242.	0.8	8
7	Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. Journal of Environmental Management, 2016, 181, 522-535.	3.8	78
8	Preparation of Activated Carbon-SnO ₂ , TiO ₂ , and WO ₃ Catalysts. Study by FT-IR Spectroscopy. Industrial & Engineering Chemistry Research, 2016, 55, 5200-5206.	1.8	38
9	Physico-chemical characterization of activated carbon–metal oxide photocatalysts by immersion calorimetry in benzene and water. Journal of Thermal Analysis and Calorimetry, 2016, 125, 65-74.	2.0	7
10	Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study. Materials Chemistry and Physics, 2015, 152, 113-122.	2.0	7
11	Preparation and Microstructural Characterization of Activated Carbon-Metal Oxide Hybrid Catalysts: New Insights into Reaction Paths. Journal of Materials Science and Technology, 2015, 31, 806-814.	5.6	22
12	Preparation of activated carbon-metal (hydr) oxide materials by thermal methods. Thermogravimetric-mass spectrometric (TG-MS) analysis. Journal of Analytical and Applied Pyrolysis, 2015, 116, 243-252.	2.6	8
13	Temperature dependence of dc electrical conductivity of activated carbon–metal oxide nanocomposites. Some insight into conduction mechanisms. Journal of Physics and Chemistry of Solids, 2015, 87, 259-270.	1.9	14
14	Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Microporous and Mesoporous Materials, 2015, 209, 90-98.	2.2	44
15	Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: a comparison study. Physical Chemistry Chemical Physics, 2014, 16, 25161-25175.	1.3	65
16	Preparation of activated carbon-metal oxide hybrid catalysts: textural characterization. Fuel Processing Technology, 2014, 126, 95-103.	3.7	40
17	FT-IR Analysis of Pyrone and Chromene Structures in Activated Carbon. Energy & Fuels, 2014, 28, 4096-4103.	2.5	76
18	On the use of a natural peat for the removal of Cr(VI) from aqueous solutions. Journal of Colloid and Interface Science, 2012, 386, 325-332.	5.0	19

#	Article	IF	CITATIONS
19	Preparation of activated carbon from cherry stones by physical activation in air. Influence of the chemical carbonisation with H2SO4. Journal of Analytical and Applied Pyrolysis, 2012, 94, 131-137.	2.6	89
20	The influence of the impregnation method on yield of activated carbon produced by H3PO4 activation. Materials Letters, 2011, 65, 1423-1426.	1.3	7
21	Development of activated carbon from vine shoots by physical andÂchemical activation methods. Some insight into activation mechanisms. Adsorption, 2011, 17, 621-629.	1.4	43
22	Adsorption of cadmium on carbonaceous adsorbents developed from used tire rubber. Journal of Environmental Management, 2011, 92, 2193-2200.	3.8	37
23	Development of adsorbents from used tire rubber. Fuel Processing Technology, 2011, 92, 206-212.	3.7	50
24	Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Processing Technology, 2011, 92, 261-265.	3.7	44
25	Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air. Fuel Processing Technology, 2011, 92, 266-270.	3.7	35
26	Adsorption Isotherms of Methylene Blue in Aqueous Solution onto Activated Carbons Developed from Vine Shoots (<i>Vitis Vinifera</i>) by Physical and Chemical Methods. Adsorption Science and Technology, 2010, 28, 751-759.	1.5	4
27	Devulcanization and Demineralization of Used Tire Rubber by Thermal Chemical Methods: A Study by X-ray Diffraction. Energy & Fuels, 2010, 24, 3401-3409.	2.5	24
28	Cherry stones as precursor of activated carbons for supercapacitors. Materials Chemistry and Physics, 2009, 114, 323-327.	2.0	180
29	The development of an activated carbon from cherry stones and its use in the removal of ochratoxin A from red wine. Food Control, 2009, 20, 298-303.	2.8	42
30	Adsorption of mercury from single and multicomponent metal systems on activated carbon developed from cherry stones. Adsorption, 2008, 14, 601-610.	1.4	12
31	Uptake of lead by carbonaceous adsorbents developed fromÂtireÂrubber. Adsorption, 2008, 14, 591-600.	1.4	20
32	Porous Structure of Activated Carbon Prepared from Cherry Stones by Chemical Activation with Phosphoric Acid. Energy & Fuels, 2007, 21, 2942-2949.	2.5	57
33	Thermal behaviour of lignocellulosic material in the presence of phosphoric acid. Influence of the acid content in the initial solution. Carbon, 2006, 44, 2347-2350.	5.4	64
34	Preparation and textural characterisation of activated carbon from vine shoots (Vitis vinifera) by H3PO4—Chemical activation. Applied Surface Science, 2006, 252, 5961-5966.	3.1	69
35	Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Applied Surface Science, 2006, 252, 5967-5971.	3.1	165
36	Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Applied Surface Science, 2006, 252, 5980-5983.	3.1	81

#	Article	IF	CITATIONS
37	Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. Journal of Hazardous Materials, 2005, 119, 231-238.	6.5	70
38	Monitoring of Zn(II) and Cd(II) adsorption on activated carbon from aqueous multicomponent solutions by differential pulse polarography (DPP). International Journal of Environmental Analytical Chemistry, 2005, 85, 1051-1063.	1.8	4
39	Development of Activated Carbon Using Vine Shoots (Vitis Vinifera) and Its Use for Wine Treatment. Journal of Agricultural and Food Chemistry, 2005, 53, 644-650.	2.4	23
40	Preparation of mesoporous and macroporous materials from rubber of tyre wastes. Microporous and Mesoporous Materials, 2004, 67, 35-41.	2.2	44
41	Adsorption kinetics of zinc in multicomponent ionic systems. Journal of Colloid and Interface Science, 2004, 277, 292-298.	5.0	19
42	Catalysis by alkali and alkaline earth metals of the gasification in CO2 and in steam of chars from a bituminous coal with high inorganic matter content. Thermochimica Acta, 1988, 125, 79-88.	1.2	6
43	Catalysis by alkali and alkaline-earth metals of the gasification in CO2 and steam of chars from a semi-anthracite with high inorganic matter content. Fuel, 1987, 66, 216-222.	3.4	16
44	The characterization of surface properties and steam reactivities of two Spanish coals of high ash content. Fuel, 1986, 65, 991-996.	3.4	14
45	Shock Resistance and Compression Analysis of Concrete in Expanded Polystyrene Formworks (EPSFWs). Materials Science Forum, 0, 636-637, 287-292.	0.3	0