Jin-Feng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8029316/publications.pdf

Version: 2024-02-01

623734 610901 60 723 14 24 citations g-index h-index papers 60 60 60 744 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diamond Field Effect Transistors With MoO ₃ Gate Dielectric. IEEE Electron Device Letters, 2017, 38, 786-789.	3.9	75
2	A > 3 kV/2.94 m \$Omegacdot\$ cm ² and Low Leakage Current With Low Turn-On Voltage Lateral GaN Schottky Barrier Diode on Silicon Substrate With Anode Engineering Technique. IEEE Electron Device Letters, 2019, 40, 1583-1586.	3.9	50
3	High quality InAlN/GaN heterostructures grown on sapphire by pulsed metal organic chemical vapor deposition. Journal of Crystal Growth, 2011, 314, 359-364.	1.5	44
4	Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors. Applied Physics Letters, 2012, 100, .	3.3	35
5	High temperature (300 °C) ALD grown Al2O3 on hydrogen terminated diamond: Band offset and electrical properties of the MOSFETs. Applied Physics Letters, 2020, 116, .	3.3	35
6	Enhancement of band-to-band tunneling in mono-layer transition metal dichalcogenides two-dimensional materials by vacancy defects. Applied Physics Letters, 2014, 104, .	3.3	34
7	Mobility of Twoâ€Dimensional Hole Gas in Hâ€Terminated Diamond. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700401.	2.4	30
8	The mobility of two-dimensional electron gas in AlGaN/GaN heterostructures with varied Al content. Science in China Series F: Information Sciences, 2008, 51, 780-789.	1.1	26
9	Hydrogen-terminated polycrystalline diamond MOSFETs with Al2O3 passivation layers grown by atomic layer deposition at different temperatures. AIP Advances, 2018, 8, .	1.3	26
10	High Performance Single Crystalline Diamond Normally-Off Field Effect Transistors. IEEE Journal of the Electron Devices Society, 2019, 7, 82-87.	2.1	23
11	Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate. Chinese Physics B, 2016, 25, 127305.	1.4	18
12	Fabrication and Characteristics of AllnN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al ₂ O ₃ Gate Dielectric. Chinese Physics Letters, 2010, 27, 128501.	3.3	17
13	Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AllnGaN/GaN heterojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 67, 77-83.	2.7	16
14	Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition. AIP Advances, 2015, 5, .	1.3	15
15	Polycrystalline Diamond MOSFET With MoO ₃ Gate Dielectric and Passivation Layer. IEEE Electron Device Letters, 2017, 38, 1302-1304.	3.9	15
16	Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates. Chinese Physics B, 2016, 25, 017303.	1.4	14
17	Characterization and mobility analysis of MoO ₃ -gated diamond MOSFET. Japanese Journal of Applied Physics, 2017, 56, 100301.	1.5	13
18	High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector. Applied Physics Letters, 2020, 116 , .	3.3	13

#	Article	IF	CITATIONS
19	Superior transport properties of InGaN channel heterostructure with high channel electron mobility. Applied Physics Express, 2016, 9, 061003.	2.4	12
20	Characterization and Mobility Analysis of Normally off Hydrogenâ€Terminated Diamond Metal–Oxide–Semiconductor Fieldâ€Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900462.	1.8	12
21	Performance of H-diamond MOSFETs with high temperature ALD grown HfO2 dielectric. Diamond and Related Materials, 2020, 106, 107846.	3.9	12
22	Progress in Group III nitride semiconductor electronic devices. Journal of Semiconductors, 2012, 33, 081001.	3.7	11
23	Effects of interlayer growth condition on the transport properties of heterostructures with InGaN channel grown on sapphire by metal organic chemical vapor deposition. Applied Physics Letters, 2015, 106, .	3.3	11
24	Efficient parametric yield optimization of VLSI circuit by uniform design sampling method. Microelectronics Reliability, 2005, 45, 155-162.	1.7	10
25	Development and characteristic analysis of a field-plated Al ₂ O ₃ /AlInN/GaN MOS—HEMT. Chinese Physics B, 2011, 20, 017203.	1.4	10
26	A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor. Chinese Physics B, 2014, 23, 087305.	1.4	10
27	Optical and structural investigation of <i>a</i> plane GaN layers on <i>r</i> plane sapphire with nucleation layer optimization. Chinese Physics B, 2011, 20, 057801.	1.4	9
28	An InGaN/GaN MQWs Solar Cell Improved By a Surficial GaN Nanostructure as Light Traps. IEEE Photonics Technology Letters, 2018, 30, 83-86.	2.5	9
29	Normally-off polycrystalline C H diamond MISFETs with MgF2 gate insulator and passivation. Diamond and Related Materials, 2021, 119, 108547.	3.9	9
30	High Mobility Normally-OFF Hydrogenated Diamond Field Effect Transistors With BaFâ,, Gate Insulator Formed by Electron Beam Evaporator. IEEE Transactions on Electron Devices, 2022, 69, 1206-1210.	3.0	9
31	Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance. Applied Physics Letters, 2017, 111, 222107.	3.3	8
32	Demonstration of Al0.85Ga0.15N Schottky barrier diode with > 3 kV breakdown voltage and the reverse leakage currents formation mechanism analysis. Applied Physics Letters, 2021, 118 , .	3.3	7
33	Polycrystalline diamond RF MOSFET with MoO3 gate dielectric. AIP Advances, 2017, 7, .	1.3	6
34	Study of electronic transport properties in AlGaN/AlN/GaN/AlGaN double-heterojunction transistor. Journal of Applied Physics, 2019, 126, 075707.	2.5	6
35	Microwave power performance analysis of hydrogen terminated diamond MOSFET. Diamond and Related Materials, 2021, 118, 108538.	3.9	6
36	InAlN/AlN/GaN Field-Plated MIS-HEMTs with a Plasma-Enhanced Chemical Vapor Deposition SiN Gate Dielectric. Chinese Physics Letters, 2013, 30, 058502.	3.3	5

#	Article	IF	CITATIONS
37	Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition. Chinese Physics Letters, 2018, 35, 078101.	3.3	5
38	A Fast Extraction Method of Energy Distribution of Border Traps in AlGaN/GaN MIS-HEMT. IEEE Journal of the Electron Devices Society, 2020, 8, 905-910.	2.1	5
39	Lattice-matched AllnN/GaN multi-channel heterostructure and HEMTs with low on-resistance. Applied Physics Letters, 2021, 119, .	3.3	5
40	Diamond MOSFET with MoO3/Si3N4 doubly stacked gate dielectric. Applied Physics Letters, 2022, 120, .	3.3	5
41	Two-dimensional electron gas (2DEG) mobility affected by the in mole fraction fluctuation in In x Al 1â°'x N/GaN heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 207-210.	2.7	4
42	Theoretical analysis of the mobility of two-dimensional electron gas in the quaternary AlxInyGa1-x-yN/GaN heterojunctions limited by the alloy composition fluctuation. AIP Advances, 2017, 7, .	1.3	4
43	Electronic Transport Properties in AllnGaN/AlGaN Heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700787.	1.8	4
44	Simulation Investigation of Laterally Downscaled N-Polar GaN HEMTs. IEEE Transactions on Electron Devices, 2019, 66, 4673-4678.	3.0	4
45	Model of Electron Population and Energy Band Diagram of Multiple-Channel GaN Heterostructures. IEEE Transactions on Electron Devices, 2021, 68, 1557-1562.	3.0	4
46	Depth-dependent mosaic tilt and twist in GaN epilayer: An approximate evaluation. Chinese Physics B, 2014, 23, 068102.	1.4	3
47	Research on the hydrogen terminated single crystal diamond MOSFET with MoO3 dielectric and gold gate metal. Journal of Semiconductors, 2018, 39, 074003.	3.7	3
48	Influence of stress on the optical properties of double InGaN/GaN multiple quantum wells. Optical Materials Express, 2018, 8, 1528.	3.0	3
49	H-diamond MOS interface properties and FET characteristics with high-temperature ALD-grown HfO2 dielectric. AIP Advances, 2021, 11, 035041.	1.3	3
50	Structural and optical investigation of nonpolar <i>a</i> -plane GaN grown by metalâ€"organic chemical vapour deposition on <i>r</i> -plane sapphire by neutron irradiation. Chinese Physics B, 2012, 21, 027802.	1.4	2
51	Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition. Chinese Physics B, 2016, 25, 018102.	1.4	2
52	Polycrystalline diamond normally-off MESFET passivated by a MoO3 layer. Results in Physics, 2021, 20, 103760.	4.1	2
53	A Large Gain and High Resolution Diamond Radiation Detector With Au/Hydrogen Termination Ohmic Contact. IEEE Electron Device Letters, 2022, 43, 454-457.	3.9	2
54	Anisotropic elastic scattering of stripe/line-shaped scatters to two-dimensional electron gas: Model and illustrations in a nonpolar AlGaN/GaN hetero-junction. Journal of Applied Physics, 2014, 116, 093705.	2.5	1

#	Article	IF	CITATIONS
55	Energy relaxation of hot electrons in III-N bulk materials. Semiconductor Science and Technology, 2016, 31, 025016.	2.0	1
56	Impact of charged basal stacking faults on the mobility of two-dimensional electron gas in nonpolar <i>a</i> -plane AlGaN/GaN heterostructures. Semiconductor Science and Technology, 2015, 30, 085007.	2.0	0
57	Improvement of reverse blocking performance in vertical power MOSFETs with Schottky–drain-connected semisuperjunctions. Chinese Physics B, 2017, 26, 047306.	1.4	O
58	Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures. Chinese Physics Letters, 2017, 34, 128501.	3.3	0
59	GaN microrod sidewall epitaxial lateral overgrowth on a close-packed microrod template. Japanese Journal of Applied Physics, 2018, 57, 050305.	1.5	O
60	Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 028101.	0.5	0