Anthony Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer's Disease. Stem Cell Reviews and Reports, 2022, 18, 718-731.	3.8	40
2	Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science, 2022, 376, eabf3041.	12.6	171
3	Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biology, 2021, 22, 76.	8.8	58
4	Approaches for the sensitive detection of rare base and prime editing events. Methods, 2021, 194, 75-82.	3.8	1
5	Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells. Methods, 2021, 194, 18-29.	3.8	7
6	Generation of MNZTASi001-A, a human pluripotent stem cell line from a person with primary progressive multiple sclerosis. Stem Cell Research, 2021, 57, 102568.	0.7	4
7	Image-Based Quantitation of Kainic Acid-Induced Excitotoxicity as a Model of Neurodegeneration in Human iPSC-Derived Neurons. Methods in Molecular Biology, 2021, , 1.	0.9	3
8	CRISPR/Cas-Mediated Knock-in of Genetically Encoded Fluorescent Biosensors into the AAVS1 Locus of Human-Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2021, , 1.	0.9	3
9	A Simple Differentiation Protocol for Generation of Induced Pluripotent Stem Cell-Derived Basal Forebrain-Like Cholinergic Neurons for Alzheimer's Disease and Frontotemporal Dementia Disease Modeling. Cells, 2020, 9, 2018.	4.1	27
10	Comparison of CRISPR/Cas Endonucleases for in vivo Retinal Gene Editing. Frontiers in Cellular Neuroscience, 2020, 14, 570917.	3.7	19
11	lf Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions?. Neuroscientist, 2020, 26, 438-454.	3.5	23
12	Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina. Human Gene Therapy, 2019, 30, 1349-1360.	2.7	22
13	NLRP3-Dependent and -Independent Processing of Interleukin (IL)-1β in Active Ulcerative Colitis. International Journal of Molecular Sciences, 2019, 20, 57.	4.1	61
14	Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Molecular Vision, 2019, 25, 174-182.	1.1	5
15	Uteroglobin and FLRG concentrations in aqueous humor are associated with age in primary open angle glaucoma patients. BMC Ophthalmology, 2018, 18, 57.	1.4	3
16	Nod-Like Receptor Pyrin-Containing Protein 6Â(NLRP6) Is Up-regulated inÂlleal Crohn's Disease andÂDifferentially Expressed in Goblet Cells. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 110-112.e8.	4.5	16
17	Peeking into the molecular trove of discarded surgical specimens. Clinical and Experimental Ophthalmology, 2016, 44, 661-662.	2.6	0
18	Enriched retinal ganglion cells derived from human embryonic stem cells. Scientific Reports, 2016, 6, 30552.	3.3	97

ANTHONY COOK

#	Article	IF	CITATIONS
19	Participant understanding and recall of informed consent for induced pluripotent stem cell biobanking. Cell and Tissue Banking, 2016, 17, 449-456.	1.1	20
20	Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS ONE, 2016, 11, e0154544.	2.5	13
21	Characterisation of colonic dysplasia-like epithelial atypia in murine colitis. World Journal of Gastroenterology, 2016, 22, 8334.	3.3	10
22	Selfâ€reported student confidence in troubleshooting ability increases after completion of an inquiryâ€based <scp>PCR</scp> practical. Biochemistry and Molecular Biology Education, 2015, 43, 316-323.	1.2	7
23	TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Molecular Vision, 2015, 21, 1162-72.	1.1	40
24	SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes. Toxicology and Applied Pharmacology, 2014, 277, 288-297.	2.8	19
25	Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes. Toxicology and Applied Pharmacology, 2014, 281, 136-145.	2.8	31
26	SIRT1 modulates miRNA processing defects in p53-mutated human keratinocytes. Journal of Dermatological Science, 2014, 74, 142-149.	1.9	11
27	Reflections on the Value of Mapping the Final Theory Examination in a Molecular Biochemistry Unit. Journal of Microbiology and Biology Education, 2014, 15, 53-54.	1.0	Ο
28	Exposure of colonic epithelial cells to oxidative and endoplasmic reticulum stress causes rapid potassium efflux and calcium influx. Cell Biochemistry and Function, 2013, 31, 603-611.	2.9	6
29	Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells. Particle and Fibre Toxicology, 2013, 10, 54.	6.2	33
30	Melanoma cell invasiveness is regulated by miRâ€211 suppression of the BRN2 transcription factor. Pigment Cell and Melanoma Research, 2011, 24, 525-537.	3.3	158
31	NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease. PLoS ONE, 2011, 6, e21907.	2.5	81
32	The Recycling Endosome Protein Rab17 Regulates Melanocytic Filopodia Formation and Melanosome Trafficking. Traffic, 2011, 12, 627-643.	2.7	83
33	Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS ONE, 2010, 5, e9685.	2.5	181
34	Disease-specific, neurosphere-derived cells as models for brain disorders. DMM Disease Models and Mechanisms, 2010, 3, 785-798.	2.4	175
35	Analysis of Cultured Human Melanocytes Based on Polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P Loci. Journal of Investigative Dermatology, 2009, 129, 392-405.	0.7	96
36	SOX9 and SOX10 but Not BRN2 Are Required for Nestin Expression in Human Melanoma Cells. Journal of Investigative Dermatology, 2009, 129, 945-953.	0.7	43

ANTHONY COOK

#	Article	IF	CITATIONS
37	PPARγ agonists attenuate proliferation and modulate Wnt∫β-catenin signalling in melanoma cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 844-852.	2.8	31
38	Red hair is the null phenotype of MC1R. Human Mutation, 2008, 29, E88-E94.	2.5	69
39	POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigment Cell and Melanoma Research, 2008, 21, 611-626.	3.3	62
40	Post-Transcriptional Regulation of Melanin Biosynthetic Enzymes by cAMP and Resveratrol in Human Melanocytes. Journal of Investigative Dermatology, 2007, 127, 2216-2227.	0.7	100
41	BRN2 in Melanocytic Cell Development, Differentiation, and Transformation. , 2006, , 149-167.		3
42	Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Experimental Cell Research, 2005, 308, 222-235.	2.6	62
43	Gene-expression profiling reveals distinct expression patterns for Classic versus Variant Merkel cell phenotypes and new classifier genes to distinguish Merkel cell from small-cell lung carcinoma. Oncogene, 2004, 23, 2732-2742.	5.9	63
44	Screening of Human Primary Melanocytes of Defined Melanocortin-1 Receptor Genotype: Pigmentation Marker, Ultrastructural and UV-Survival Studies. Pigment Cell & Melanoma Research, 2003, 16, 198-207.	3.6	39
45	Human Melanoblasts in Culture: Expression of BRN2 and Synergistic Regulation by Fibroblast Growth Factor-2, Stem Cell Factor, and Endothelin-3. Journal of Investigative Dermatology, 2003, 121, 1150-1159.	0.7	88
46	Gene Expression Profiling Reveals Two Distinct Subtypes of Merkel Cell Carcinoma. , 2003, , 195-202.		1
47	Expression of Developmentally Regulated Transcription Factors in Merkel Cell Carcinoma. , 2003, , 203-218.		Ο
48	Proneural and proneuroendocrine transcription factor expression in cutaneous mechanoreceptor (Merkel) cells and Merkel cell carcinoma. International Journal of Cancer, 2002, 101, 103-110.	5.1	68
49	Frequent allelic loss at 10q23 but low incidence ofPTEN mutations in merkel cell carcinoma. International Journal of Cancer, 2001, 92, 409-413.	5.1	63
50	CDKN2A is not the principal target of deletions on the short arm of chromosome 9 in neuroendocrine (Merkel cell) carcinoma of the skin. International Journal of Cancer, 2001, 93, 361-367.	5.1	10