
## **Stephen Christon**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028668/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Suprathermal Magnetospheric Atomic and Molecular Heavy Ions at and Near Earth, Jupiter, and Saturn:<br>Observations and Identification. Journal of Geophysical Research: Space Physics, 2020, 125,<br>e2019JA027271. | 2.4 | 7         |
| 2  | The Composition of ~96ÂkeVÂW <sup>+</sup> in Saturn's Magnetosphere. Journal of Geophysical<br>Research: Space Physics, 2020, 125, e2019JA027315.                                                                    | 2.4 | 2         |
| 3  | Discovery of Suprathermal Ionospheric Origin Fe <sup>+</sup> in and Near Earth's Magnetosphere.<br>Journal of Geophysical Research: Space Physics, 2017, 122, 11,175.                                                | 2.4 | 10        |
| 4  | Discovery of suprathermal Fe <sup>+</sup> in Saturn's magnetosphere. Journal of Geophysical<br>Research: Space Physics, 2015, 120, 2720-2738.                                                                        | 2.4 | 9         |
| 5  | Suprathermal magnetospheric minor ions heavier than water at Saturn: Discovery of<br><sup>28</sup> M <sup>+</sup> seasonal variations. Journal of Geophysical Research: Space Physics,<br>2014, 119, 5662-5673.      | 2.4 | 11        |
| 6  | Saturn suprathermal O <sub>2</sub> <sup>+</sup> and massâ€28 <sup>+</sup> molecular ions: Longâ€term seasonal and solar variation. Journal of Geophysical Research: Space Physics, 2013, 118, 3446-3463.             | 2.4 | 15        |
| 7  | Revisiting the role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization. Journal of Geophysical Research, 2012, 117, .                                                         | 3.3 | 7         |
| 8  | Correction to "Pressure changes associated with substorm depolarization in the near-Earth plasma<br>sheet― Journal of Geophysical Research, 2011, 116, n/a-n/a.                                                      | 3.3 | 0         |
| 9  | Energetic O+and H+ions in the plasma sheet: Implications for the transport of ionospheric ions.<br>Journal of Geophysical Research, 2011, 116, n/a-n/a.                                                              | 3.3 | 37        |
| 10 | Longitude dependences of energetic H <sup>+</sup> and O <sup>+</sup> at Saturn. Journal of<br>Geophysical Research, 2010, 115, .                                                                                     | 3.3 | 7         |
| 11 | Distribution of O <sup>+</sup> ions in the plasma sheet and locations of substorm onsets. Journal of Geophysical Research, 2010, 115, .                                                                              | 3.3 | 3         |
| 12 | Pressure changes associated with substorm depolarization in the nearâ€Earth plasma sheet. Journal of<br>Geophysical Research, 2010, 115, .                                                                           | 3.3 | 14        |
| 13 | Response of ions of ionospheric origin to storm time substorms: Coordinated observations over the ionosphere and in the plasma sheet. Journal of Geophysical Research, 2009, 114, .                                  | 3.3 | 19        |
| 14 | Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma<br>ion mass and O <sup>+</sup> triggering substorm model. Journal of Geophysical Research, 2009, 114, .          | 3.3 | 37        |
| 15 | The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization.<br>Journal of Geophysical Research, 2009, 114, .                                                                 | 3.3 | 69        |
| 16 | A stateâ€ofâ€theâ€art picture of substormâ€associated evolution of the nearâ€Earth magnetotail obtained from superposed epoch analysis. Journal of Geophysical Research, 2009, 114, .                                | 3.3 | 107       |
| 17 | Solar and ionospheric plasmas in the ring current region. Geophysical Monograph Series, 2005, ,<br>179-194.                                                                                                          | 0.1 | 12        |
| 18 | Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources. Journal of<br>Geophysical Research, 2005, 110, .                                                                               | 3.3 | 43        |

STEPHEN CHRISTON

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Overwhelming O+contribution to the plasma sheet energy density during the October 2003<br>superstorm: Geotail/EPIC and IMAGE/LENA observations. Journal of Geophysical Research, 2005, 110, .       | 3.3 | 81        |
| 20 | Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current. Journal of Geophysical Research, 2005, 110, .                                    | 3.3 | 30        |
| 21 | Geotail observations of signatures in the near-Earth magnetotail for the extremely intense substorms of the 30 October 2003 storm. Journal of Geophysical Research, 2005, 110, .                    | 3.3 | 22        |
| 22 | Acceleration sites of energetic ions upstream of the Earth's bow shock and in the magnetosheath:<br>Statistical study on charge states of heavy ions. Journal of Geophysical Research, 2004, 109, . | 3.3 | 16        |
| 23 | Change of the plasma sheet ion composition during magnetic storm development observed by the<br>Geotail spacecraft. Journal of Geophysical Research, 2003, 108, .                                   | 3.3 | 39        |
| 24 | Solar cycle and geomagnetic N+1/O+1variation in outer dayside magnetosphere: Possible relation to to to topside ionosphere. Geophysical Research Letters, 2002, 29, 2-1-2-3.                        | 4.0 | 17        |
| 25 | Ion composition of the near-Earth plasma sheet in storm and quiet intervals: Geotail/EPIC measurements. Journal of Geophysical Research, 2001, 106, 8391-8403.                                      | 3.3 | 45        |
| 26 | Change of energetic ion composition in the plasma sheet during substorms. Journal of Geophysical Research, 2000, 105, 23277-23286.                                                                  | 3.3 | 36        |
| 27 | Low-charge-state heavy ions upstream of Earth's bow shock and sunward flux of ionospheric O+1, N+1, and O+2ions: Geotail observations. Geophysical Research Letters, 2000, 27, 2433-2436.           | 4.0 | 29        |
| 28 | Fast tailward stream observed in the distant tail associated with substorm: A multi-instrument study.<br>Geophysical Research Letters, 2000, 27, 3571-3574.                                         | 4.0 | 3         |
| 29 | Concurrent observations of solar wind oxygen by Geotail in the magnetosphere and wind in in in in in in in interplanetary space. Geophysical Research Letters, 1998, 25, 2987-2990.                 | 4.0 | 10        |
| 30 | Magnetospheric plasma regimes identified using Geotail measurements: 2. Statistics, spatial<br>distribution, and geomagnetic dependence. Journal of Geophysical Research, 1998, 103, 23521-23542.   | 3.3 | 24        |
| 31 | Magnetospheric plasma regimes identified using Geotail measurements: 1. Regime identification and distant tail variability. Journal of Geophysical Research, 1998, 103, 23503-23520.                | 3.3 | 20        |
| 32 | GEOTAIL Energetic Particles and Ion Composition Instrument Journal of Geomagnetism and Geoelectricity, 1994, 46, 39-57.                                                                             | 0.9 | 153       |
| 33 | High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region. Journal of<br>Geophysical Research, 1994, 99, 13465.                                                          | 3.3 | 27        |
| 34 | Tailward energetic ion streams observed at â^¼100 REby GEOTAIL-EPIC associated with geomagnetic activity intensification. Geophysical Research Letters, 1994, 21, 3015-3018.                        | 4.0 | 16        |
| 35 | Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail<br>flow-reversal events. Geophysical Research Letters, 1994, 21, 3023-3026.                               | 4.0 | 42        |
| 36 | Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions. Journal of Geophysical Research, 1991, 96, 1-22.                                     | 3.3 | 244       |

**STEPHEN CHRISTON** 

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Relativistic electrons at geosynchronous orbit, interplanetary electron flux, and the 13â€month Jovian synodic year. Geophysical Research Letters, 1989, 16, 1129-1132.                                                       | 4.0 | 10        |
| 38 | Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. Journal of Geophysical Research, 1989, 94, 13409-13424.                                                      | 3.3 | 220       |
| 39 | Implications of large flow velocity signatures in nearly isotropic ion distributions. Geophysical Research Letters, 1988, 15, 303-306.                                                                                        | 4.0 | 53        |
| 40 | Energy spectra of plasma sheet ions and electrons from â^1⁄450 eV/ <i>e</i> to â^1⁄41 MeV during plasma temperature transitions. Journal of Geophysical Research, 1988, 93, 2562-2572.                                        | 3.3 | 381       |
| 41 | Latitude variation of recurrent Mevâ€energy proton flux enhancements in the heliocentric radial range 11 to 20 AU and possible correlation with solar coronal hole dynamics. Geophysical Research Letters, 1985, 12, 109-112. | 4.0 | 14        |
| 42 | Energetic interplanetary nucleon flux anisotropies: The effect of Earth's bow shock and magnetosheath on sunward flow. Journal of Geophysical Research, 1982, 87, 5045-5062.                                                  | 3.3 | 8         |
| 43 | On the origin of the MeV energy nucleon flux associated with CIRs. Journal of Geophysical Research, 1981, 86, 8852-8868.                                                                                                      | 3.3 | 20        |
| 44 | Separation of corotating nucleon fluxes from solar flare fluxes by radial gradients and nuclear composition. Astrophysical Journal, 1979, 227, L49.                                                                           | 4.5 | 36        |