Vladimir Gak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028657/publications.pdf

Version: 2024-02-01

933447 888059 27 323 10 17 citations h-index g-index papers 27 27 27 438 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Catalytic Fe3+ Clusters and Complexes in Nafion Active in Photo-Fenton Processes. High-Resolution Electron Microscopy and Femtosecond Studies. Langmuir, 2002, 18, 9054-9066.	3.5	49
2	Photochemical and photophysical properties ofmeso-tetraferrocenylporphyrin. Quenching ofmeso-tetraphenylporphyrin by ferrocene. Russian Chemical Bulletin, 1999, 48, 1900-1903.	1.5	41
3	Plasmon-Induced Light Absorption of Phthalocyanine Layer in Hybrid Nanoparticles: Enhancement Factor and Effective Spectra. Journal of Physical Chemistry C, 2016, 120, 1816-1823.	3.1	27
4	Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 57-62.	3.9	24
5	Femtosecond relaxation of photoexcited states in nanosized semiconductor particles of iron oxides. Russian Chemical Bulletin, 2002, 51, 457-461.	1.5	21
6	Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes. High Energy Chemistry, 2016, 50, 395-399.	0.9	18
7	Magnesium octa[(4′-benzo-15-crown-5)oxy]phthalocyaninate in water micellar solutions of sodium deoxycholate. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 599-607.	1.1	14
8	On the possibility of nonradiative energy transfer between hydrophobic quantum dots in solutions. Colloid Journal, 2014, 76, 6-11.	1.3	14
9	Preparation and Properties of Hybrid Nanostructures of Zinc Tetraphenylporphyrinate and an Amphiphilic Copolymer of N-Vinylpyrrolidone in a Neutral Aqueous Buffer Solution. Russian Journal of Physical Chemistry A, 2018, 92, 329-333.	0.6	12
10	Förster electronic excitation energy transfer upon adsorption of meso-tetra(3-pyridyl)porphyrin on InP@ZnS colloidal quantum dots. Journal of Luminescence, 2018, 200, 151-157.	3.1	11
11	The use of reversed micelles for the synthesis of nanoparticles. High Energy Chemistry, 2008, 42, 516-521.	0.9	10
12	Spectral-Luminescent properties of the dioxytetramethylene-bridged naphthol-styrylquinoline dyad. High Energy Chemistry, 2012, 46, 38-43.	0.9	9
13	Supramolecular organization of crown- and phosphoryl-containing magnesium and zinc phthalocyaninates in solutions of synthetic and natural surfactants. Russian Chemical Bulletin, 2018, 67, 2205-2211.	1.5	9
14	Study of Electrophotophysical Characteristics of IR Photodetectors Based on PbS Colloidal Quantum Dots. High Energy Chemistry, 2020, 54, 36-45.	0.9	9
15	Specifics of luminescence of nanoclusters consisting of InP@ZnS colloidal quantum dots stabilized by oleylamine. High Energy Chemistry, 2017, 51, 449-454.	0.9	7
16	Photochemical Properties of Supramolecular Dyad with Pyrenylethenylquinoline as a Photochrome. High Energy Chemistry, 2018, 52, 222-229.	0.9	7
17	Influence of photoactivation on luminescent properties of colloidal InP@ZnS quantum dots. Journal of Luminescence, 2020, 226, 117297.	3.1	7
18	Influence of alkanethiols on fluorescence blinking of InP@ZnS colloidal quantum dots. High Energy Chemistry, 2017, 51, 118-121.	0.9	6

#	Article	IF	Citations
19	Effect of the solvent composition in methanol-pentane and methanol-acetonitrile mixtures on the spectral and luminescent properties of 1,2-dihydroquinolines. High Energy Chemistry, 2009, 43, 391-399.	0.9	5
20	Luminescent siliceous materials based on sodium silicate, organic polymers and silicon analogs. Materials Chemistry and Physics, 2017, 185, 65-72.	4.0	5
21	Spectroscopic properties, structure, and photoinduced motion of 4-(2-naphthyl)pyridine in cyclodextrin cavities. Russian Chemical Bulletin, 2010, 59, 941-953.	1.5	4
22	Solubilization and Photochemical Stability of Octa[$(4\hat{a}\in^2$ -Benzo-15-Crown-5)Oxy]-Phthalocyanines in Aqueous Micellar Solutions. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 1092-1101.	1.1	4
23	Magnesium Octa[(4'-Benzo-15-Crown-5)-Oxy]Phthalocyaninate in Low-Molecular Hydrogels: Spectral Properties and Release under Stimulation. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 174-184.	1.1	4
24	Spectroluminescent properties of cadmium selenide nanoparticles synthesized in AOT reverse micelles. High Energy Chemistry, 2010, 44, 524-529.	0.9	3
25	Supramolecular Organization of Magnesium Octa[(4'-benzo- 15-crown-5)oxy]phthalocyaninate in Aqueous Solutions of Polyelectrolytes and Surfactants: Analysis by Spectral Methods. Macroheterocycles, 2015, 8, 343-350.	0.5	2
26	Study of Photoelectrophysical Characteristics of IR Photodetector Based on HgTe Colloidal Quantum Dots. High Energy Chemistry, 2022, 56, 91-100.	0.9	1
27	Influence of Dithiols on Fluorescence Blinking of Colloidal Quantum Dots InP@ZnS. High Energy Chemistry, 2019, 53, 26-30.	0.9	0