Ran Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028192/publications.pdf

Version: 2024-02-01

840776 888059 19 507 11 17 citations h-index g-index papers 19 19 19 615 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	OD/2D Heterojunctions of Ti ₃ C ₂ MXene QDs/SiC as an Efficient and Robust Photocatalyst for Boosting the Visible Photocatalytic NO Pollutant Removal Ability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40176-40185.	8.0	132
2	MIL-100(Fe)/Ti ₃ C ₂ MXene as a Schottky Catalyst with Enhanced Photocatalytic Oxidation for Nitrogen Fixation Activities. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44249-44262.	8.0	116
3	Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3. Journal of Environmental Sciences, 2011, 23, 699-704.	6.1	67
4	Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature. Chemical Engineering Journal, 2019, 358, 291-298.	12.7	30
5	Mechanism study on denitration by new PMS modified bamboo charcoal bifunctional photocatalyst. Chemical Engineering Journal, 2017, 316, 544-552.	12.7	26
6	Study on the mechanism of NO removal by plasma-adsorption catalytic process. Fuel, 2017, 200, 290-298.	6.4	26
7	Oxidation path analysis of NO in the adsorption and removal process using activated carbon fibers. Journal of Fuel Chemistry and Technology, 2012, 40, 1002-1008.	2.0	18
8	Study on desulfurization and denitrification by modified activated carbon fibers with visible-light photocatalysis. Journal of Fuel Chemistry and Technology, 2015, 43, 1516-1522.	2.0	17
9	A facile approach to synthesis carbon quantum dots-doped P25 visible-light driven photocatalyst with improved NO removal performance. Atmospheric Pollution Research, 2020, 11, 303-309.	3.8	17
10	Experimental study on NO removal by surface activated bamboo charcoal. Atmospheric Pollution Research, 2019, 10, 474-479.	3.8	14
11	Modeling of NO conversion during combustion under high CO2 concentration using detailed chemical kinetics. Fuel Processing Technology, 2011, 92, 939-945.	7.2	11
12	Denitration and adsorption mechanism of heat-treated bamboo charcoal. Journal of Environmental Chemical Engineering, 2017, 5, 6194-6200.	6.7	11
13	Mechanism study on NO removal over the CQDs@MIL-100 (Fe) composite photocatalyst. Environmental Technology and Innovation, 2021, 24, 101809.	6.1	9
14	Preparation of a novel V2C mxene/g-C3N4 and its performance in plasma catalytic denitrification. E3S Web of Conferences, 2021, 252, 02068.	0.5	5
15	A fundamental research on combustion chemical kinetic model's precision property. Science China Technological Sciences, 2010, 53, 2222-2227.	4.0	3
16	Experimental and modeling study of NO emission under high CO2 concentration. Science China Technological Sciences, 2010, 53, 3275-3283.	4.0	3
17	Modeling of flame characteristics under O ₂ /CO ₂ atmosphere by detailed chemical kinetics., 2013, 3, 281-290.		1
18	Experimental study on plasma denitration by a bamboo based composite catalyst. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108466.	3.6	1

#	Article	IF	CITATIONS
19	Chemical Kinetic Research on Flame Characteristics of Ethylene under High CO ₂ Concentration Atmosphere. Advanced Materials Research, 2014, 1070-1072, 512-516.	0.3	0