Miguel Muniz-Calvente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elastic and plastic parts of strain energy density in critical distance determination. Engineering Fracture Mechanics, 2015, 147, 100-118.	4.3	240
2	Multiaxial fatigue assessment using a simplified critical plane-based criterion. International Journal of Fatigue, 2011, 33, 969-976.	5.7	137
3	Abaqus2Matlab: A suitable tool for finite element post-processing. Advances in Engineering Software, 2017, 105, 9-16.	3.8	121
4	Generalized probabilistic model allowing for various fatigue damage variables. International Journal of Fatigue, 2017, 100, 187-194.	5.7	112
5	Multiaxial fatigue life estimation in welded joints using the critical plane approach. International Journal of Fatigue, 2009, 31, 188-196.	5.7	102
6	Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 870-883.	3.4	97
7	A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters. Engineering Fracture Mechanics, 2017, 185, 284-300.	4.3	71
8	Size effect in S–N curves: A fractal approach to finite-life fatigue strength. International Journal of Fatigue, 2009, 31, 927-933.	5.7	64
9	A methodology for probabilistic prediction of fatigue crack initiation taking into account the scale effect. Engineering Fracture Mechanics, 2017, 185, 101-113.	4.3	54
10	Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts. Theoretical and Applied Fracture Mechanics, 2016, 84, 57-63.	4.7	53
11	An approach to size effect in fatigue of metals using fractal theories. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 619-627.	3.4	51
12	Study of the time-temperature-dependent behaviour of PVB: Application to laminated glass elements. Thin-Walled Structures, 2017, 119, 324-331.	5.3	50
13	Multiaxial fatigue under variable amplitude loadings: review and solutions. International Journal of Structural Integrity, 2022, 13, 349-393.	3.3	46
14	Fracture mechanics based approach to fatigue analysis of welded joints. Engineering Failure Analysis, 2015, 49, 67-78.	4.0	43
15	Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure. Theoretical and Applied Fracture Mechanics, 2016, 85, 26-36.	4.7	43
16	Fatigue life evaluation of metallic structures under multiaxial random loading. International Journal of Fatigue, 2016, 90, 191-199.	5.7	41
17	Spectral fatigue life estimation for non-proportional multiaxial random loading. Theoretical and Applied Fracture Mechanics, 2016, 83, 67-72.	4.7	34
18	Fatigue life estimation of fillet-welded tubular T-joints subjected to multiaxial loading. International Journal of Fatigue, 2017, 101, 263-270.	5.7	24

#	Article	IF	CITATIONS
19	Probabilistic Weibull Methodology for Fracture Prediction of Brittle and Ductile Materials. Applied Mechanics and Materials, 0, 784, 443-451.	0.2	19
20	A comparative review of time- and frequency-domain methods for fatigue damage assessment. International Journal of Fatigue, 2022, 163, 107069.	5.7	19
21	Probabilistic assessment of fatigue data from shape homologous but different scale specimens. Application to an experimental program. Engineering Fracture Mechanics, 2017, 185, 193-209.	4.3	18
22	Methodology to evaluate fatigue damage under multiaxial random loading. Engineering Fracture Mechanics, 2017, 185, 114-123.	4.3	15
23	Welded joints under multiaxial non-proportional loading. Theoretical and Applied Fracture Mechanics, 2018, 93, 202-210.	4.7	15
24	Fatigue Assessment Strategy Using Bayesian Techniques. Materials, 2019, 12, 3239.	2.9	14
25	A methodology for simulating plasticity induced crack closure and crack shape evolution based on elastic–plastic fracture parameters. Engineering Fracture Mechanics, 2021, 241, 107412.	4.3	14
26	A comparative analysis of multiaxial fatigue models under random loading. Engineering Structures, 2019, 182, 112-122.	5.3	13
27	Considerations about the existence or non-existence of the fatigue limit: implications on practical design. International Journal of Fracture, 2020, 223, 189-196.	2.2	13
28	A probabilistic approach for multiaxial fatigue criteria. Frattura Ed Integrita Strutturale, 2017, 11, 160-165.	0.9	13
29	A hybrid SURF-DIC algorithm to estimate local displacements in structures using low-cost conventional cameras. Engineering Failure Analysis, 2019, 104, 807-815.	4.0	12
30	Probabilistic failure assessment of Fibreglass composites. Composite Structures, 2017, 160, 1163-1170.	5.8	11
31	Improving with probabilistic and scale features the Basquin linear and bi-linear fatigue models. Engineering Failure Analysis, 2020, 116, 104728.	4.0	11
32	Probabilistic assessment of VHCF data as pertaining to concurrent populations using a Weibull regression model. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1772-1782.	3.4	10
33	Hazard maps and global probability as a way to transfer standard fracture results to reliable design of real components. Engineering Failure Analysis, 2016, 69, 135-146.	4.0	9
34	Study of alternatives and experimental validation for predictions of hole-edge fatigue crack growth in 42CrMo4 steel. Engineering Structures, 2018, 176, 621-631.	5.3	9
35	Statistical joint evaluation of fracture results from distinct experimental programs: An application to annealed glass. Theoretical and Applied Fracture Mechanics, 2016, 85, 149-157.	4.7	8
36	The renewed TC12/ESIS technical committee - Risk analysis and safety of large structures and components. Engineering Failure Analysis, 2019, 105, 798-802.	4.0	8

MIGUEL MUNIZ-CALVENTE

#	Article	IF	CITATIONS
37	Suitability of constraint and closure models for predicting crack growth in generic configurations. Engineering Fracture Mechanics, 2020, 225, 106808.	4.3	8
38	A novel procedure for damage evaluation of fillet-welded joints. International Journal of Fatigue, 2020, 136, 105599.	5.7	8
39	Distribution of the through-thickness effective stress intensity factor range and its influence on fatigue crack growth rate curves. Theoretical and Applied Fracture Mechanics, 2022, 119, 103374.	4.7	8
40	Fitting the fracture curve of concrete as a density function pertaining to the generalized extreme value family. Materials and Design, 2017, 129, 201-209.	7.0	7
41	Novel non-linear relationship to evaluate the critical plane orientation. International Journal of Fatigue, 2019, 124, 537-543.	5.7	7
42	A frequencyâ€domain approach for damage detection in welded structures. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1134-1148.	3.4	7
43	Fatigue Assessment of Selective Laser Melted Ti-6Al-4V: Influence of Speed Manufacturing and Porosity. Metals, 2021, 11, 1022.	2.3	7
44	Influence of random fatigue loading non-proportionality on damage. Theoretical and Applied Fracture Mechanics, 2018, 96, 56-63.	4.7	6
45	Study of the influence of notch radii and temperature on the probability of failure: A methodology to perform a combined assessment. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2663-2673.	3.4	6
46	A Novel Approach to Describe the Time–Temperature Conversion among Relaxation Curves of Viscoelastic Materials. Materials, 2020, 13, 1809.	2.9	6
47	Fatigue Life Response of P355NL1 Steel under Uniaxial Loading Using Kohout-Věchet Model. Procedia Engineering, 2016, 160, 109-116.	1.2	5
48	A Probabilistic Approach to Assessing and Predicting the Failure of Notched Components. Materials, 2019, 12, 4053.	2.9	5
49	Pitch bearing lifetime prediction considering the effect of pitch control strategy. Journal of Physics: Conference Series, 2019, 1222, 012017.	0.4	4
50	Probabilistic failure analysis for real glass components under general loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 1283-1291.	3.4	4
51	Fatigue life estimation of pre-corroded 42CrMo4 subjected to accelerated pitting corrosion method. International Journal of Fracture, 2022, 234, 69-80.	2.2	4
52	Análisis probabilÃstico de elementos de vidrio recocido mediante una distribución triparamétrica Weibull. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 153-158.	1.9	3
53	Probabilistic Non-Linear Cumulative Fatigue Damage of the P355NL1 Pressure Vessel Steel. , 2016, , .		3
54	A geometry and temperature dependent regression model for statistical analysis of fracture toughness in notched specimens. Engineering Fracture Mechanics, 2021, 242, 107414.	4.3	3

MIGUEL MUNIZ-CALVENTE

#	Article	IF	CITATIONS
55	Joint evaluation of fracture results from distinct test conditions, implying loading, specimen size and geometry. Procedia Structural Integrity, 2016, 2, 720-727.	0.8	2
56	ICMFM18-Mechanical fatigue of metals. International Journal of Structural Integrity, 2017, 8, 614-616.	3.3	2
57	Shape of the power spectral density matrix components: Influence on fatigue damage. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 972-987.	3.4	2
58	Hazard Maps and Probabilistic Failure Assessment: Two Ways of Tackling Reliability. Procedia Engineering, 2015, 114, 738-745.	1.2	1
59	Joint evaluation of fracture and fatigue results from distinct specimen size and geometry. Procedia Structural Integrity, 2016, 1, 142-149.	0.8	1
60	The Generalised Local Model applied to Fibreglass. Composite Structures, 2018, 202, 1353-1360.	5.8	1
61	Probabilistic Assessment of Fracture Toughness of Epoxy Resin EPOLAM 2025 Including the Notch Radii Effect. Polymers, 2021, 13, 1857.	4.5	1
62	Probabilistic failure analysis for glass components under general loading conditions. Procedia Structural Integrity, 2016, 2, 2591-2597.	0.8	0
63	Response of laminated glass elements subject to dynamic loadings using a monolithic model and a stress effective Young's modulus. Journal of Sandwich Structures and Materials, 0, , 109963622210846.	3.5	0