Kyle Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027906/publications.pdf

Version: 2024-02-01

13	307366	1372474	
287	7	10	
citations	h-index	g-index	
10	10	450	
		citing authors	
	287	citations h-index 10 10	

#	Article	IF	CITATIONS
1	Optical lattice experiments at unobserved conditions with generative adversarial deep learning. Physical Review Research, $2021, 3, .$	1.3	4
2	Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning. Physical Review E, 2021, 104, 064128.	0.8	4
3	Adversarial Generation of Mesoscale Surfaces from Small-Scale Chemical Motifs. Journal of Physical Chemistry C, 2020, 124, 23158-23163.	1.5	9
4	Finding the ground state of spin Hamiltonians with reinforcement learning. Nature Machine Intelligence, 2020, 2, 509-517.	8.3	17
5	Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces. Matter, 2020, 3, 433-448.	5.0	33
6	Extensive deep neural networks for transferring small scale learning to large scale systems. Chemical Science, 2019, 10, 4129-4140.	3.7	32
7	Convolutional neural networks for atomistic systems. Computational Materials Science, 2018, 149, 134-142.	1.4	39
8	Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models. Physical Review E, 2018, 97, 032119.	0.8	23
9	Publisher's Note: Deep learning and the SchrĶdinger equation [Phys. Rev. A 96 , 042113 (2017)]. Physical Review A, 2018, 97, .	1.0	2
10	Deep learning and the SchrĶdinger equation. Physical Review A, 2017, 96, .	1.0	124