
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027860/publications.pdf Version: 2024-02-01

KELLEY W MODEMEN

#	Article	IF	CITATIONS
1	A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Cell Chemical Biology, 2022, 29, 84-97.e8.	5.2	21
2	O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biology, 2022, 107, 77-96.	3.6	8
3	Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Scientific Reports, 2022, 12, 4352.	3.3	4
4	Enzymatic Synthesis of Xylan Microparticles with Tunable Morphologies. ACS Materials Au, 2022, 2, 440-452.	6.0	9
5	Integrated Chemoenzymatic Approach to Streamline the Assembly of Complex Glycopeptides in the Liquid Phase. Journal of the American Chemical Society, 2022, 144, 9057-9065.	13.7	11
6	Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multi-omics integration. Nature Communications, 2022, 13, 2455.	12.8	27
7	A Clickable Bioorthogonal Sydnoneâ€Aglycone for the Facile Preparation of a Core 1 <i>O</i> â€Glycanâ€Array. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
8	Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. Journal of Biological Chemistry, 2022, 298, 102064.	3.4	9
9	Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness. Cancer Gene Therapy, 2022, 29, 1662-1675.	4.6	21
10	Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nature Communications, 2022, 13, .	12.8	23
11	Modularity of the hydrophobic core and evolution of functional diversity in fold A glycosyltransferases. Journal of Biological Chemistry, 2022, 298, 102212.	3.4	3
12	Cover Feature: A Clickable Bioorthogonal Sydnoneâ€Aglycone for the Facile Preparation of a Core 1 <i>O</i> â€Glycanâ€Array (Eur. J. Org. Chem. 27/2022). European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
13	Enriched blood IgG sialylation attenuates IgG-mediated and IgG-controlled-IgE-mediated allergic reactions. Journal of Allergy and Clinical Immunology, 2021, 147, 763-767.	2.9	14
14	Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites. Journal of Biological Chemistry, 2021, 296, 100110.	3.4	15
15	Sparse isotope labeling for nuclear magnetic resonance (NMR) of glycoproteins using 13C-glucose. Glycobiology, 2021, 31, 425-435.	2.5	10
16	AtFUT4 and AtFUT6 Are Arabinofuranose-Specific Fucosyltransferases. Frontiers in Plant Science, 2021, 12, 589518.	3.6	8
17	Crystal structures of β-1,4- <i>N</i> -acetylglucosaminyltransferase 2: structural basis for inherited muscular dystrophies. Acta Crystallographica Section D: Structural Biology, 2021, 77, 486-495.	2.3	1
18	Appropriate aglycone modification significantly expands the glycan substrate acceptability of α1,6-fucosyltransferase (FUT8). Biochemical Journal, 2021, 478, 1571-1583.	3.7	5

#	Article	IF	CITATIONS
19	Variable posttranslational modifications of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. Glycobiology, 2021, 31, 1080-1092.	2.5	31
20	Modulation of Siglec-7 Signaling Via In Situ-Created High-Affinity <i>cis</i> -Ligands. ACS Central Science, 2021, 7, 1338-1346.	11.3	27
21	Mapping the glycosyltransferase fold landscape using interpretable deep learning. Nature Communications, 2021, 12, 5656.	12.8	22
22	Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nature Communications, 2021, 12, 5449.	12.8	35
23	Impacting Bacterial Sialidase Activity by Incorporating Bioorthogonal Chemical Reporters onto Mammalian Cell-Surface Sialosides. ACS Chemical Biology, 2021, 16, 2307-2314.	3.4	6
24	Rational enzyme design for controlled functionalization of acetylated xylan for cell-free polymer biosynthesis. Carbohydrate Polymers, 2021, 273, 118564.	10.2	4
25	Modulation of the NOTCH1 Pathway by LUNATIC FRINGE Is Dominant over That of MANIC or RADICAL FRINCE. Molecules, 2021, 26, 5942.	3.8	10
26	Quantifying Carbohydrate-Active Enzyme Activity with Glycoprotein Substrates Using Electrospray Ionization Mass Spectrometry and Center-of-Mass Monitoring. Analytical Chemistry, 2021, 93, 15262-15270.	6.5	1
27	Harnessing galactose oxidase in the development of a chemoenzymatic platform for glycoconjugate vaccine design. Journal of Biological Chemistry, 2021, , 101453.	3.4	8
28	Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. Journal of Biological Chemistry, 2020, 295, 17027-17045.	3.4	19
29	Structural mechanism of cooperative regulation of calcium-sensing receptor-mediated cellular signaling. Current Opinion in Physiology, 2020, 17, 269-277.	1.8	10
30	Molecular Mechanism of Polysaccharide Acetylation by the Arabidopsis Xylan <i>O</i> -acetyltransferase XOAT1. Plant Cell, 2020, 32, 2367-2382.	6.6	32
31	A Glycan Arrayâ€Based Assay for the Identification and Characterization of Plant Glycosyltransferases. Angewandte Chemie - International Edition, 2020, 59, 12493-12498.	13.8	22
32	Cell Line-, Protein-, and Sialoglycosite-Specific Control of Flux-Based Sialylation in Human Breast Cells: Implications for Cancer Progression. Frontiers in Chemistry, 2020, 8, 13.	3.6	8
33	CUPRA-ZYME: An Assay for Measuring Carbohydrate-Active Enzyme Activities, Pathways, and Substrate Specificities. Analytical Chemistry, 2020, 92, 3228-3236.	6.5	6
34	HNK-1 sulfotransferase modulates α-dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan. Glycobiology, 2020, 30, 817-829.	2.5	17
35	hFUT1-Based Live-Cell Assay To Profile α1-2-Fucoside-Enhanced Influenza Virus A Infection. ACS Chemical Biology, 2020, 15, 819-823.	3.4	4
36	Heterologous expression of plant glycosyltransferases for biochemistry and structural biology. Methods in Cell Biology, 2020, 160, 145-165.	1.1	7

#	Article	IF	CITATIONS
37	Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. ELife, 2020, 9, .	6.0	53
38	Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nature Chemical Biology, 2019, 15, 853-864.	8.0	123
39	Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Organic and Biomolecular Chemistry, 2019, 17, 7304-7308.	2.8	15
40	Direct Visualization of Live Zebrafish Glycans via Singleâ€Step Metabolic Labeling with Fluorophoreâ€Tagged Nucleotide Sugars. Angewandte Chemie - International Edition, 2019, 58, 14327-14333.	13.8	17
41	Selective Engineering of Linkageâ€Specific α2,6―N â€Linked Sialoproteins Using Sydnoneâ€Modified Sialic Acid Bioorthogonal Reporters. Angewandte Chemie, 2019, 131, 4325-4329.	2.0	10
42	Selective Engineering of Linkageâ€Specific α2,6â€ <i>N</i> â€Linked Sialoproteins Using Sydnoneâ€Modified Siali Acid Bioorthogonal Reporters. Angewandte Chemie - International Edition, 2019, 58, 4281-4285.	. ^C 13.8	34
43	A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology, 2019, 29, 645-656.	2.5	16
44	Measurement of residual dipolar couplings in methyl groups via carbon detection. Journal of Biomolecular NMR, 2019, 73, 191-198.	2.8	7
45	NMR Resonance Assignment Methodology: Characterizing Large Sparsely Labeled Glycoproteins. Journal of Molecular Biology, 2019, 431, 2369-2382.	4.2	8
46	Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation. Frontiers in Immunology, 2019, 10, 48.	4.8	18
47	An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chemistry, 2019, 11, 229-236.	13.6	124
48	Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nature Chemistry, 2019, 11, 161-169.	13.6	94
49	A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. Journal of the American Society for Mass Spectrometry, 2018, 29, 1153-1165.	2.8	12
50	Cell-based glycan arrays for probing glycan–glycan binding protein interactions. Nature Communications, 2018, 9, 880.	12.8	94
51	Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytologist, 2018, 218, 1049-1060.	7.3	67
52	Human <i>N</i> -acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4637-4642.	7.1	37
53	Modulating Cell‣urface Receptor Signaling and Ion Channel Functions by Inâ€Situ Glycan Editing. Angewandte Chemie, 2018, 130, 979-983.	2.0	4
54	Isotopic labeling with cellular O-glycome reporter/amplification (ICORA) for comparative O-glycomics of cultured cells. Glycobiology, 2018, 28, 214-222.	2.5	22

#	Article	IF	CITATIONS
55	Expression system for structural and functional studies of human glycosylation enzymes. Nature Chemical Biology, 2018, 14, 156-162.	8.0	182
56	Modulating Cell‣urface Receptor Signaling and Ion Channel Functions by Inâ€Situ Glycan Editing. Angewandte Chemie - International Edition, 2018, 57, 967-971.	13.8	26
57	Sialyltransferase-Based Chemoenzymatic Histology for the Detection of <i>N</i> - and <i>O</i> -Glycans. Bioconjugate Chemistry, 2018, 29, 1231-1239.	3.6	24
58	Structural Characterization of a Heparan Sulfate Pentamer Interacting with LAR-Ig1-2. Biochemistry, 2018, 57, 2189-2199.	2.5	14
59	A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. Journal of Biological Chemistry, 2018, 293, 19047-19063.	3.4	43
60	A Single-Step Chemoenzymatic Reaction for the Construction of Antibody–Cell Conjugates. ACS Central Science, 2018, 4, 1633-1641.	11.3	59
61	A mutant-cell library for systematic analysis of heparan sulfate structure–function relationships. Nature Methods, 2018, 15, 889-899.	19.0	71
62	Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11573-11578.	7.1	61
63	Identification of Key Enzymes for Pectin Synthesis in Seed Mucilage. Plant Physiology, 2018, 178, 1045-1064.	4.8	63
64	Paramagnetic Tag for Glycosylation Sites in Glycoproteins: Structural Constraints on Heparan Sulfate Binding to Robo1. ACS Chemical Biology, 2018, 13, 2560-2567.	3.4	12
65	Defective mucin-type glycosylation on α-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. Journal of Biological Chemistry, 2018, 293, 14534-14544.	3.4	3
66	Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes. PLoS ONE, 2018, 13, e0195812.	2.5	24
67	Downstream Products are Potent Inhibitors of the Heparan Sulfate 2-O-Sulfotransferase. Scientific Reports, 2018, 8, 11832.	3.3	11
68	O-Linked N-Acetylglucosamine (O-GlcNAc) Expression Levels Epigenetically Regulate Colon Cancer Tumorigenesis by Affecting the Cancer Stem Cell Compartment via Modulating Expression of Transcriptional Factor MYBL1. Journal of Biological Chemistry, 2017, 292, 4123-4137.	3.4	50
69	Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6954-6959.	7.1	118
70	NMR assignments of sparsely labeled proteins using a genetic algorithm. Journal of Biomolecular NMR, 2017, 67, 283-294.	2.8	8
71	Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases. Glycobiology, 2017, 27, 206-212.	2.5	45
72	Protein O-Linked Mannose β-1,4-N-Acetylglucosaminyl-transferase 2 (POMGNT2) Is a Gatekeeper Enzyme for Functional Glycosylation of α-Dystroglycan. Journal of Biological Chemistry, 2017, 292, 2101-2109.	3.4	27

#	Article	IF	CITATIONS
73	RElative QUantitation Inferred by Evaluating Mixtures (REQUIEM). Analytica Chimica Acta, 2017, 993, 22-37.	5.4	0
74	Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain. Molecular Therapy, 2017, 25, 2743-2752.	8.2	10
75	Structural, mutagenic and <i>inÂsilico</i> studies of xyloglucan fucosylation in <i>Arabidopsis thaliana</i> suggest a waterâ€mediated mechanism. Plant Journal, 2017, 91, 931-949.	5.7	53
76	Biochemical characterization of functional domains of the chaperone Cosmc. PLoS ONE, 2017, 12, e0180242.	2.5	14
77	ST8SIA4-Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells. Stem Cells, 2016, 34, 1742-1752.	3.2	21
78	NDST2 (N-Deacetylase/N-Sulfotransferase-2) Enzyme Regulates Heparan Sulfate Chain Length. Journal of Biological Chemistry, 2016, 291, 18600-18607.	3.4	28
79	Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. Journal of the American Chemical Society, 2016, 138, 13059-13067.	13.7	42
80	Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1). Journal of Biological Chemistry, 2016, 291, 20085-20095.	3.4	30
81	Structural Aspects of Heparan Sulfate Binding to Robo1–lg1–2. ACS Chemical Biology, 2016, 11, 3106-3113.	3.4	22
82	One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells. Journal of the American Chemical Society, 2016, 138, 11575-11582.	13.7	81
83	Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Science Advances, 2016, 2, e1600241.	10.3	116
84	Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7890-E7899.	7.1	29
85	Divergent Chemoenzymatic Synthesis of Asymmetrical oreâ€Fucosylated and Coreâ€Unmodified <i>N</i> â€Glycans. Chemistry - A European Journal, 2016, 22, 18742-18746.	3.3	38
86	Differentiation-related glycan epitopes identify discrete domains of the muscle glycocalyx. Glycobiology, 2016, 26, 1120-1132.	2.5	10
87	Selective Exo-Enzymatic Labeling Detects Increased Cell Surface Sialoglycoprotein Expression upon Megakaryocytic Differentiation. Journal of Biological Chemistry, 2016, 291, 3982-3989.	3.4	45
88	Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology, 2016, 26, 360-376.	2.5	73
89	The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. ELife, 2016, 5, .	6.0	98
90	High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension. Journal of Visualized Experiments, 2015, , e53568.	0.3	55

#	Article	lF	CITATIONS
91	A PEGylated Photocleavable Auxiliary Mediates the Sequential Enzymatic Glycosylation and Native Chemical Ligation of Peptides. Angewandte Chemie - International Edition, 2015, 54, 7711-7715.	13.8	55
92	Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1928-1939.	3.8	60
93	High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface. Journal of Biological Chemistry, 2015, 290, 10729-10740.	3.4	54
94	ERManI (Endoplasmic Reticulum Class I α-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway. Journal of Biological Chemistry, 2015, 290, 22184-22192.	3.4	24
95	Direct Determination of Multiple Ligand Interactions with the Extracellular Domain of the Calcium-sensing Receptor. Journal of Biological Chemistry, 2014, 289, 33529-33542.	3.4	23
96	Two <scp>A</scp> rabidopsis proteins synthesize acetylated xylan <i>inÂvitro</i> . Plant Journal, 2014, 80, 197-206.	5.7	192
97	Sparse labeling of proteins: Structural characterization from long range constraints. Journal of Magnetic Resonance, 2014, 241, 32-40.	2.1	18
98	Mannosidase, Alpha, Class 1 (MAN1A1 (Golgi Alpha-Mannnosidase IA), Man1A2 (Golgi Alpha-Mannosidase) Tj ET	Qq0 0 0 rg	BT_/Overlocl
99	Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. Journal of Clinical Investigation, 2014, 124, 209-221.	8.2	53
100	B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. ELife, 2014, 3, .	6.0	78
101	Mannosidase, Alpha, Class 2a1 (MAN2A1, Golgi α-Mannosidase II). , 2014, , 1313-1326.		0
102	Enzymatic Basis for N-Glycan Sialylation. Journal of Biological Chemistry, 2013, 288, 34680-34698.	3.4	116
103	Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie, 2013, 95, 2345-2353.	2.6	25
104	Metabolic glycoengineering of mesenchymal stromal cells with N-propanoylmannosamine. Glycobiology, 2013, 23, 1004-1012.	2.5	18
105	The Lectin Domain of the Polypeptide GalNAc Transferase Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation. Journal of Biological Chemistry, 2013, 288, 19900-19914.	3.4	67
106	The 2013 Karl Meyer Award and Rosalind Kornfeld Award from the Society for Glycobiology. Glycobiology, 2013, 23, 1207-1209.	2.5	0

107	Selective Exoâ€Enzymatic Labeling of Nâ€Glycans on the Surface of Living Cells by Recombinant ST6Gal I. Angewandte Chemie - International Edition, 2013, 52, 13012-13015.	13.8	83	
108	The C-terminal fragment of axon guidance molecule Slit3 binds heparin and neutralizes heparin's	2.5	14	

The C-terminal fragment of axon guidance molecule Slit3 binds heparin and neutralizes heparin's anticoagulant activity. Glycobiology, 2012, 22, 1183-1192. 108 2.5

#	Article	IF	CITATIONS
109	A Genetic Model of Substrate Reduction Therapy for Mucopolysaccharidosis. Journal of Biological Chemistry, 2012, 287, 36283-36290.	3.4	21
110	Transcriptional Regulation of the Protocadherin β Cluster during Her-2 Protein-induced Mammary Tumorigenesis Results from Altered N-Glycan Branching. Journal of Biological Chemistry, 2012, 287, 24941-24954.	3.4	21
111	Regulation of Glycan Structures in Murine Embryonic Stem Cells. Journal of Biological Chemistry, 2012, 287, 37835-37856.	3.4	91
112	Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II. DMM Disease Models and Mechanisms, 2012, 5, 177-190.	2.4	36
113	Proteomic Identification of Glycosylphosphatidylinositol Anchor-dependent Membrane Proteins Elevated in Breast Carcinoma. Journal of Biological Chemistry, 2012, 287, 25230-25240.	3.4	44
114	NMR Characterization of Immunoglobulin G Fc Glycan Motion on Enzymatic Sialylation. Biochemistry, 2012, 51, 4618-4626.	2.5	108
115	Heparan Sulfate Facilitates FGF and BMP Signaling to Drive Mesoderm Differentiation of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2012, 287, 22691-22700.	3.4	76
116	Vertebrate protein glycosylation: diversity, synthesis and function. Nature Reviews Molecular Cell Biology, 2012, 13, 448-462.	37.0	1,372
117	Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2011, 89, 176-182.	6.2	73
118	Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont. Nature Chemical Biology, 2010, 6, 125-132.	8.0	115
119	Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. Journal of Lipid Research, 2010, 51, 480-489.	4.2	31
120	Transcript Analysis of Stem Cells. Methods in Enzymology, 2010, 479, 73-91.	1.0	28
121	The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. Journal of Cell Science, 2009, 122, 976-984.	2.0	48
122	IDAWG: Metabolic Incorporation of Stable Isotope Labels for Quantitative Glycomics of Cultured Cells. Journal of Proteome Research, 2009, 8, 3816-3823.	3.7	108
123	Focused glycomic analysis of the <i>N</i> â€linked glycan biosynthetic pathway in ovarian cancer. Proteomics, 2008, 8, 3210-3220.	2.2	103
124	Loss of expression of <i>N</i> â€acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins. FEBS Letters, 2008, 582, 527-535.	2.8	19
125	Probing the Substrate Specificity of Golgi α-Mannosidase II by Use of Synthetic Oligosaccharides and a Catalytic Nucleophile Mutant. Journal of the American Chemical Society, 2008, 130, 8975-8983.	13.7	50
126	¹³ C-Sialic Acid Labeling of Glycans on Glycoproteins Using ST6Gal-I. Journal of the American Chemical Society, 2008, 130, 11864-11865.	13.7	25

#	Article	IF	CITATIONS
127	Regulation of Glycan Structures in Animal Tissues. Journal of Biological Chemistry, 2008, 283, 17298-17313.	3.4	188
128	Human Endoplasmic Reticulum Mannosidase I Is Subject to Regulated Proteolysis. Journal of Biological Chemistry, 2007, 282, 4841-4849.	3.4	46
129	Glycomics of Proteoglycan Biosynthesis in Murine Embryonic Stem Cell Differentiation. Journal of Proteome Research, 2007, 6, 4374-4387.	3.7	130
130	Spin-Labeled Analogs of CMP-NeuAc as NMR Probes of the α-2,6-Sialyltransferase ST6Gal I. Chemistry and Biology, 2007, 14, 409-418.	6.0	13
131	Changes in the backbone ceramide subspecies as mouse embryonic stem cells develop into embroid bodies. FASEB Journal, 2007, 21, A237.	0.5	Ο
132	Family 47 αâ€Mannosidases in Nâ€Glycan Processing. Methods in Enzymology, 2006, 415, 31-46.	1.0	62
133	N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Current Opinion in Structural Biology, 2006, 16, 592-599.	5.7	111
134	Essential and mutually compensatory roles of Â-mannosidase II and Â-mannosidase IIx in N-glycan processing in vivo in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8983-8988.	7.1	65
135	Potent and Selective Inhibition of Class II α-D-Mannosidase Activity by a Bicyclic Sulfonium Salt. ChemBioChem, 2005, 6, 845-848.	2.6	28
136	Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology, 2005, 15, 421-436.	2.5	139
137	Energetics of Substrate Binding and Catalysis by Class 1 (Glycosylhydrolase Family 47) α-Mannosidases Involved in N-Glycan Processing and Endoplasmic Reticulum Quality Control. Journal of Biological Chemistry, 2005, 280, 29837-29848.	3.4	38
138	Mechanism of Class 1 (Glycosylhydrolase Family 47) α-Mannosidases Involved in N-Glycan Processing and Endoplasmic Reticulum Quality Control. Journal of Biological Chemistry, 2005, 280, 16197-16207.	3.4	106
139	Characterization of a Human Core-specific Lysosomal α1,6-Mannosidase Involved in N-Glycan Catabolism. Journal of Biological Chemistry, 2005, 280, 37204-37216.	3.4	38
140	A Practical Synthesis of Kifunensine Analogues as Inhibitors of Endoplasmic Reticulum α-Mannosidase I. Journal of Organic Chemistry, 2005, 70, 9892-9904.	3.2	43
141	Structure of Mouse Golgi α-Mannosidase IA Reveals the Molecular Basis for Substrate Specificity among Class 1 (Family 47 Glycosylhydrolase) α1,2-Mannosidases. Journal of Biological Chemistry, 2004, 279, 29774-29786.	3.4	48
142	Inhibition of Golgi Mannosidase II with Mannostatin A Analogues: Synthesis, Biological Evaluation, and Structure-Activity Relationship Studies. ChemBioChem, 2004, 5, 1220-1227.	2.6	28
143	Elucidation of the molecular logic by which misfolded α1-antitrypsin is preferentially selected for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8229-8234.	7.1	158
144	Organizational Diversity among Distinct Glycoprotein Endoplasmic Reticulum-associated Degradation Programs. Molecular Biology of the Cell, 2002, 13, 2639-2650.	2.1	103

#	Article	IF	CITATIONS
145	Germ Cell Survival Through Carbohydrate-Mediated Interaction with Sertoli Cells. Science, 2002, 295, 124-127.	12.6	134
146	Molecular cloning and expression of an α-mannosidase gene in Mycobacterium tuberculosis. Microbial Pathogenesis, 2001, 30, 9-18.	2.9	14
147	Overexpression of the Golgi-localized enzyme α-mannosidase IIx in Chinese hamster ovary cells results in the conversion of hexamannosyl-N-acetylchitobiose to tetramannosyl-N-acetylchitobiose in the N-glycan-processing pathway. FEBS Journal, 2001, 268, 1280-1288.	0.2	29
148	Insect Cells Encode a Class II α-Mannosidase with Unique Properties. Journal of Biological Chemistry, 2001, 276, 16335-16340.	3.4	41
149	Structural Basis for Catalysis and Inhibition ofN-Glycan Processing Class I α1,2-Mannosidases. Journal of Biological Chemistry, 2000, 275, 41287-41298.	3.4	141
150	Identification, Expression, and Characterization of a cDNA Encoding Human Endoplasmic Reticulum Mannosidase I, the Enzyme That Catalyzes the First Mannose Trimming Step in Mammalian Asn-linked Oligosaccharide Biosynthesis. Journal of Biological Chemistry, 1999, 274, 21375-21386.	3.4	132
151	Purification, crystallization and preliminary X-ray crystallographic analysis of recombinant murine Golgi mannosidase IA, a class I 1±-mannosidase involved in Asn-linked oligosaccharide maturation. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 571-573.	2.5	4
152	α-Mannosidases involved in N-glycan processing show cell specificity and distinct subcompartmentalization within the Golgi apparatus of cells in the testis and epididymis. European Journal of Cell Biology, 1999, 78, 441-452.	3.6	39
153	Cloning, expression, purification, and characterization of the acid Â-mannosidase from Trypanosoma cruzi. Glycobiology, 1998, 8, 1183-1194.	2.5	39
154	Substrate specificities of recombinant murine Golgi Â1,2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing Â1,2-mannosidases. Glycobiology, 1998, 8, 981-995.	2.5	109
155	Isolation and characterization of a class II α-mannosidase cDNA from lepidopteran insect cells. Glycobiology, 1997, 7, 113-127.	2.5	46
156	Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development. Glycobiology, 1997, 7, 367-372.	2.5	61
157	Human Lysosomal and Jack Bean α-Mannosidases Are Retaining Glycosidases. Biochemical and Biophysical Research Communications, 1997, 238, 896-898.	2.1	36
158	Alpha-Mannosidase-II Deficiency Results in Dyserythropoiesis and Unveils an Alternate Pathway in Oligosaccharide Biosynthesis. Cell, 1997, 90, 157-167.	28.9	199
159	Cloning, Expression, Purification, and Characterization of the Human Broad Specificity Lysosomal Acid α-Mannosidase. Journal of Biological Chemistry, 1996, 271, 28348-28358.	3.4	82
160	Remodeling of Mouse Milk Glycoconjugates by Transgenic Expression of a Human Glycosyltransferase. Journal of Biological Chemistry, 1995, 270, 29515-29519.	3.4	61
161	Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology, 1994, 4, 113-125.	2.5	331