Alfred Teischinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of spatial augmented reality assistance on the efficiency of prefabricating timber frame walls. Wood Material Science and Engineering, 2023, 18, 860-869.	2.3	0
2	A note on evaluating the photocatalytical activity of anatase TiO2 during photooxidation of acrylic clear wood coatings by FTIR and mechanical characterization. Polymer Degradation and Stability, 2014, 105, 206-210.	5.8	6
3	Drying and curing behaviour of melamine formaldehyde resin impregnated papers. Journal of Applied Polymer Science, 2014, 131, .	2.6	22
4	Change in fracturing and colouring of solid spruce and ash wood after thermal modification. Wood Material Science and Engineering, 2014, 9, 92-101.	2.3	12
5	Influence of thermo-analytical and rheological properties of an epoxy powder coating resin on the quality of coatings on medium density fibreboards (MDF) using in-mould technology. Progress in Organic Coatings, 2014, 77, 1539-1546.	3.9	13
6	Mechanical Characterization of Lumber of Small-Diameter Hardwood Species after Different Drying Schedules. Drying Technology, 2013, 31, 1056-1062.	3.1	2
7	Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polymer Degradation and Stability, 2013, 98, 1329-1338.	5.8	38
8	Fracture energy approach for the identification of changes in the wood caused by the drying processes. Wood Science and Technology, 2013, 47, 1323-1334.	3.2	7
9	Fracture energy vs. internal bond strength – mechanical characterization of wood-based panels. Wood Material Science and Engineering, 2012, 7, 176-185.	2.3	6
10	Indented rings (hazel growth) of Norway spruce reduce anisotropy of mechanical properties. Wood Science and Technology, 2012, 46, 1239-1246.	3.2	15
11	One press cycle production of fiberboard with unsymmetrically distributed densities. European Journal of Wood and Wood Products, 2012, 70, 471-477.	2.9	5
12	Influence of low and moderate temperature kiln drying schedules on specific mechanical properties of Norway spruce wood. European Journal of Wood and Wood Products, 2011, 69, 451-457.	2.9	12
13	Artificial ageing of softwood joints and its effect on internal bond strength with special consideration of flat-to-end grain joints. European Journal of Wood and Wood Products, 2011, 69, 597-604.	2.9	7
14	On the performance of aÂmelamine–urea–formaldehyde resin for decorative paper coatings. European Journal of Wood and Wood Products, 2010, 68, 63-75.	2.9	41
15	Dynamic mechanical properties of decorative papers impregnated with melamine formaldehyde resin. European Journal of Wood and Wood Products, 2010, 68, 179-187.	2.9	18
16	The development of wood technology and technology developments in the wood industries—from history to future. European Journal of Wood and Wood Products, 2010, 68, 281-287.	2.9	17
17	Knots in trees: strain distribution in a naturally optimised structure. Wood Science and Technology, 2010, 44, 389-398.	3.2	19
18	Determination of the bond strength of treated wood strands embedded in a  cement matrix by means of a  pull-out test. European Journal of Wood and Wood Products, 2010, 68, 407-414	2.9	4

ALFRED TEISCHINGER

#	Article	IF	CITATIONS
19	Practicalities and limitations of measuring techniques for paper properties that affect flexographic printability – A review. Nordic Pulp and Paper Research Journal, 2009, 24, 351-362.	0.7	4
20	Fillets Formed by Adhesive Bonding of Axially Oriented Webs to Flat grain Wood Pieces and their Effects on Bond Strength. Journal of Sandwich Structures and Materials, 2009, 11, 245-256.	3.5	3
21	On the warping behaviour of particleboards coated with melamine formaldehyde resin impregnated papers. European Journal of Wood and Wood Products, 2009, 67, 367.	2.9	14
22	The potential of SilviScan's X-ray diffractometry method for the rapid assessment of spiral grain in softwood, evaluated by goniometric measurements. Wood Science and Technology, 2008, 42, 95-102.	3.2	10
23	Wood surface discolouration due to simulated indoor sunlight exposure. European Journal of Wood and Wood Products, 2008, 66, 51-56.	2.9	78
24	Tensile strength of softwood butt end joints. Part 1: Effect of grain angle on adhesive bond strength. Wood Material Science and Engineering, 2007, 2, 83-89.	2.3	8
25	Tensile strength of softwood butt end joints. Part 2: Improvement of bond strength by a hydroxymethylated resorcinol primer. Wood Material Science and Engineering, 2007, 2, 90-95.	2.3	4
26	Resonance wood [Picea abies(L.) Karst.] – evaluation and prediction of violin makers' quality-grading. Journal of the Acoustical Society of America, 2007, 121, 2384-2395.	1.1	45
27	Effect of grain angle on shear strength of glued end grain to flat grain joints of defect-free softwood timber. Wood Science and Technology, 2007, 41, 501-509.	3.2	11
28	EFFECTS OF MACRO- AND MICRO-STRUCTURAL VARIABILITY ON THE SHEAR BEHAVIOR OF SOFTWOOD. IAWA Journal, 2004, 25, 231-243.	2.7	20
29	EFFECTS OF CELL ANATOMY ON THE PLASTIC AND ELASTIC BEHAVIOUR OF DIFFERENT WOOD SPECIES LOADED PERPENDICULAR TO GRAIN. IAWA Journal, 2003, 24, 117-128.	2.7	24
30	The Relationship between near Infrared Spectra of Radial Wood Surfaces and Wood Mechanical Properties. Journal of Near Infrared Spectroscopy, 2001, 9, 255-261.	1.5	87
31	Wood as a Renewable and Abundant Resource. ChemistryViews, 0, , .	0.0	0