Peter W Swaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
2	Endocytic mechanisms for targeted drug deliveryâ [~] †. Advanced Drug Delivery Reviews, 2007, 59, 748-758.	6.6	897
3	Surface Acetylation of Polyamidoamine (PAMAM) Dendrimers Decreases Cytotoxicity while Maintaining Membrane Permeability. Bioconjugate Chemistry, 2007, 18, 2054-2060.	1.8	267
4	Molecular Basis of Vitamin E Action. Journal of Biological Chemistry, 2003, 278, 43508-43515.	1.6	258
5	Camptothecins. Drugs, 2002, 62, 2039-2057.	4.9	254
6	Progress in predicting human ADME parameters in silico. Journal of Pharmacological and Toxicological Methods, 2000, 44, 251-272.	0.3	240
7	Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharmaceutical Research, 2003, 20, 110-116.	1.7	185
8	Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells. Pharmaceutical Research, 2007, 24, 2138-2145.	1.7	173
9	ITC Recommendations for Transporter Kinetic Parameter Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans. Clinical Pharmacology and Therapeutics, 2013, 94, 64-79.	2.3	172
10	Transport of Poly(Amidoamine) Dendrimers across Caco-2 Cell Monolayers: Influence of Size, Charge and Fluorescent Labeling. Pharmaceutical Research, 2006, 23, 2818-2826.	1.7	157
11	Design, Synthesis, Cytoselective Toxicity, Structure–Activity Relationships, and Pharmacophore of Thiazolidinone Derivatives Targeting Drug-Resistant Lung Cancer Cells. Journal of Medicinal Chemistry, 2008, 51, 1242-1251.	2.9	155
12	The solute carrier family 10 (SLC10): Beyond bile acid transport. Molecular Aspects of Medicine, 2013, 34, 252-269.	2.7	145
13	Human Pregnane X Receptor Antagonists and Agonists Define Molecular Requirements for Different Binding Sites. Molecular Pharmacology, 2007, 72, 592-603.	1.0	143
14	Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4. Drug Metabolism and Disposition, 2014, 42, 665-674.	1.7	140
15	Endocytosis Inhibitors Prevent Poly(amidoamine) Dendrimer Internalization and Permeability across Caco-2 Cells. Molecular Pharmaceutics, 2008, 5, 364-369.	2.3	139
16	Rapid Identification of P-glycoprotein Substrates and Inhibitors. Drug Metabolism and Disposition, 2006, 34, 1976-1984.	1.7	136
17	Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms. Pharmaceutical Research, 2014, 31, 401-413.	1.7	124
18	Structural Determinants of P-Glycoprotein-Mediated Transport of Glucocorticoids. Pharmaceutical Research, 2003, 20, 1794-1803.	1.7	112

#	Article	IF	CITATIONS
19	Current perspectives on the cellular uptake and trafficking of riboflavin. Advanced Drug Delivery Reviews, 2003, 55, 1467-1483.	6.6	108
20	Post-translational modifications of transporters. , 2018, 192, 88-99.		107
21	Pharmacophore-based discovery of ligands for drug transporters. Advanced Drug Delivery Reviews, 2006, 58, 1431-1450.	6.6	101
22	Molecular Determinants of Substrate/Inhibitor Binding to the Human and Rabbit Renal Organic Cation Transporters hOCT2 and rbOCT2. Molecular Pharmacology, 2005, 67, 1067-1077.	1.0	96
23	G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. Journal of Controlled Release, 2011, 150, 318-325.	4.8	95
24	Potential Oral Delivery of 7-Ethyl-10-Hydroxy-Camptothecin (SN-38) using Poly(amidoamine) Dendrimers. Pharmaceutical Research, 2008, 25, 1723-1729.	1.7	92
25	Comparative Pharmacophore Modeling of Organic Anion Transporting Polypeptides: A Meta-Analysis of Rat Oatp1a1 and Human OATP1B1. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 533-541.	1.3	90
26	Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery. Journal of Controlled Release, 2009, 138, 78-85.	4.8	90
27	Multi-level Analysis of Organic Anion Transporters 1, 3, and 6 Reveals Major Differences in Structural Determinants of Antiviral Discrimination. Journal of Biological Chemistry, 2008, 283, 8654-8663.	1.6	89
28	Towards a new age of virtual ADME/TOX and multidimensional drug discovery. Journal of Computer-Aided Molecular Design, 2002, 16, 381-401.	1.3	85
29	Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat, and lisinopril. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 31-38.	1.4	82
30	Structural Variation Governs Substrate Specificity for Organic Anion Transporter (OAT) Homologs. Journal of Biological Chemistry, 2007, 282, 23841-23853.	1.6	79
31	Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. , 1998, 15, 826-834.		77
32	Modeling of active transport systems. Advanced Drug Delivery Reviews, 2002, 54, 329-354.	6.6	76
33	A Ligand-Based Approach To Identify Quantitative Structureâ~'Activity Relationships for the Androgen Receptor. Journal of Medicinal Chemistry, 2004, 47, 3765-3776.	2.9	71
34	Enhanced Transepithelial Transport of Peptides by Conjugation to Cholic Acid. Bioconjugate Chemistry, 1997, 8, 520-525.	1.8	69
35	Efflux of Depsipeptide FK228 (FR901228, NSC-630176) Is Mediated by P-Glycoprotein and Multidrug Resistance-Associated Protein 1. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 268-276.	1.3	69
36	In Vitro and Pharmacophore-Based Discovery of Novel hPEPT1 Inhibitors. Pharmaceutical Research, 2005, 22, 512-517.	1.7	68

#	Article	IF	CITATIONS
37	Computational approaches to modeling drug transporters. European Journal of Pharmaceutical Sciences, 2006, 27, 411-424.	1.9	67
38	Machine Learning Methods and Docking for Predicting Human Pregnane X Receptor Activation. Chemical Research in Toxicology, 2008, 21, 1457-1467.	1.7	65
39	STRUCTURAL BIOLOGY AND FUNCTION OF SOLUTE TRANSPORTERS: IMPLICATIONS FOR IDENTIFYING AND DESIGNING SUBSTRATES. Drug Metabolism Reviews, 2002, 34, 709-750.	1.5	62
40	Straight-Chain Naltrexone Ester Prodrugs: Diffusion and Concurrent Esterase Biotransformation in Human Skin. Journal of Pharmaceutical Sciences, 2002, 91, 2571-2578.	1.6	62
41	Topology Scanning and Putative Three-Dimensional Structure of the Extracellular Binding Domains of the Apical Sodium-Dependent Bile Acid Transporter (SLC10A2)â€. Biochemistry, 2004, 43, 11380-11392.	1.2	62
42	Computational Models to Assign Biopharmaceutics Drug Disposition Classification from Molecular Structure. Pharmaceutical Research, 2007, 24, 2249-2262.	1.7	61
43	Bacterial Peptide Recognition and Immune Activation Facilitated by Human Peptide Transporter <i>PEPT2</i> . American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 536-542.	1.4	58
44	Cellular Entry of G3.5 Poly (amido amine) Dendrimers by Clathrin- and Dynamin-Dependent Endocytosis Promotes Tight Junctional Opening in Intestinal Epithelia. Pharmaceutical Research, 2010, 27, 1547-1557.	1.7	58
45	Membrane Topology of Human ASBT (SLC10A2) Determined by Dual Label Epitope Insertion Scanning Mutagenesis. New Evidence for Seven Transmembrane Domainsâ€. Biochemistry, 2006, 45, 943-953.	1.2	54
46	Molecular Determinants of Recognition for the Intestinal Peptide Carrier. Journal of Pharmaceutical Sciences, 1997, 86, 596-602.	1.6	53
47	Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. American Journal of Obstetrics and Gynecology, 2010, 202, 474.e1-474.e20.	0.7	53
48	ATP-Binding Cassette Transporter Expression in Human Placenta as a Function of Pregnancy Condition. Drug Metabolism and Disposition, 2011, 39, 1000-1007.	1.7	50
49	Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors. Drug Metabolism and Disposition, 2015, 43, 1773-1780.	1.7	50
50	Molecular modeling of the intestinal bile acid carrier: a comparative molecular field analysis study. Journal of Computer-Aided Molecular Design, 1997, 11, 581-588.	1.3	49
51	Electrophysiological Characterization and Modeling of the Structure Activity Relationship of the Human Concentrative Nucleoside Transporter 3 (hCNT3). Molecular Pharmacology, 2006, 69, 1542-1553.	1.0	48
52	Molecular Modeling of Drug–Transporter Interactions—An International Transporter Consortium Perspective. Clinical Pharmacology and Therapeutics, 2018, 104, 818-835.	2.3	43
53	Identification and Validation of Novel Human Pregnane X Receptor Activators among Prescribed Drugs via Ligand-Based Virtual Screening. Drug Metabolism and Disposition, 2011, 39, 337-344.	1.7	42
54	Identification of Novel Activators of Constitutive Androstane Receptor from FDA-Approved Drugs by Integrated Computational and Biological Approaches. Pharmaceutical Research, 2013, 30, 489-501.	1.7	42

#	Article	IF	CITATIONS
55	In silico strategies for modeling membrane transporter function. Drug Discovery Today, 2005, 10, 663-671.	3.2	39
56	Development of Computational Models for Enzymes, Transporters, Channels, and Receptors Relevant to ADME/Tox. Reviews in Computational Chemistry, 2004, , 333-415.	1.5	38
57	Identification of Novel Breast Cancer Resistance Protein (BCRP) Inhibitors by Virtual Screening. Molecular Pharmaceutics, 2013, 10, 1236-1248.	2.3	38
58	Site-Directed Mutagenesis and Use of Bile Acidâ^'MTS Conjugates to Probe the Role of Cysteines in the Human Apical Sodium-Dependent Bile Acid Transporter (SLC10A2)â€. Biochemistry, 2005, 44, 8908-8917.	1.2	37
59	Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors. Drug Metabolism and Disposition, 2015, 43, 725-734.	1.7	37
60	Use of the intestinal bile acid transporter for the uptake of cholic acid conjugates with HIV-1 protease inhibitory activity. Pharmaceutical Research, 1997, 14, 176-180.	1.7	35
61	Functional Characterization of the Peptide Transporter PEPT2 in Primary Cultures of Human Upper Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 319-325.	1.4	35
62	Transmembrane Domain VII of the Human Apical Sodium-Dependent Bile Acid Transporter ASBT (SLC10A2) Lines the Substrate Translocation Pathway. Molecular Pharmacology, 2006, 70, 1565-1574.	1.0	35
63	Reengineering the pharmaceutical industry by crash-testing molecules. Drug Discovery Today, 2005, 10, 1191-1200.	3.2	32
64	Bias in Estimation of Transporter Kinetic Parameters from Overexpression Systems: Interplay of Transporter Expression Level and Substrate Affinity. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 133-144.	1.3	32
65	The Role of Transporters in Toxicity and Disease. Drug Metabolism and Disposition, 2014, 42, 541-545.	1.7	32
66	Involvement of Endocytic Organelles in the Subcellular Trafficking and Localization of Riboflavin. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 681-687.	1.3	31
67	Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes. Toxicology and Applied Pharmacology, 2014, 279, 33-42.	1.3	31
68	Identification of interactive gene networks: A novel approach in gene array profiling of myometrial events during guinea pig pregnancy. American Journal of Obstetrics and Gynecology, 2006, 194, 1513-1523.	0.7	30
69	Intracellular Processing of Riboflavin in Human Breast Cancer Cells. Molecular Pharmaceutics, 2008, 5, 839-848.	2.3	29
70	Riboflavin-Targeted Polymer Conjugates for Breast Tumor Delivery. Pharmaceutical Research, 2013, 30, 1799-1812.	1.7	29
71	Use of the intestinal and hepatic bile acid transporters for drug delivery. Advanced Drug Delivery Reviews, 1996, 20, 59-82.	6.6	28
72	Resveratrol promotes degradation of the human bile acid transporter ASBT (SLC10A2). Biochemical Journal. 2014, 459, 301-312.	1.7	28

5

#	Article	IF	CITATIONS
73	Planar bile acids in health and disease. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2269-2276.	1.4	27
74	Mechanistic Insights of Phenobarbital-Mediated Activation of Human but Not Mouse Pregnane X Receptor. Molecular Pharmacology, 2019, 96, 345-354.	1.0	27
75	Towards a new age of virtual ADME/TOX and multidimensional drug discovery. Molecular Diversity, 2000, 5, 255-275.	2.1	25
76	A Novel Rhodamineâ^'Riboflavin Conjugate Probe Exhibits Distinct Fluorescence Resonance Energy Transfer that Enables Riboflavin Trafficking and Subcellular Localization Studies. Molecular Pharmaceutics, 2004, 1, 257-266.	2.3	24
77	Analogs of Methyllycaconitine as Novel Noncompetitive Inhibitors of Nicotinic Receptors: Pharmacological Characterization, Computational Modeling, and Pharmacophore Development. Molecular Pharmacology, 2007, 71, 1288-1297.	1.0	24
78	Conformational Flexibility of Helix VI Is Essential for Substrate Permeation of the Human Apical Sodium-Dependent Bile Acid Transporter. Molecular Pharmacology, 2008, 73, 305-313.	1.0	24
79	Cytoskeletal motors and cargo in membrane trafficking: opportunities for high specificity in drug intervention. Drug Discovery Today, 2003, 8, 494-502.	3.2	22
80	Determination of transport rates for arginine and acetaminophen in rabbit intestinal tissues in vitro. Pharmaceutical Research, 1994, 11, 283-287.	1.7	21
81	Recognition, Cointernalization, and Recycling of an Avian Riboflavin Carrier Protein in Human Placental Trophoblasts. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 465-472.	1.3	21
82	Cytosolic Half of Transmembrane Domain IV of the Human Bile Acid Transporter hASBT (SLC10A2) Forms Part of the Substrate Translocation Pathway. Biochemistry, 2008, 47, 3606-3614.	1.2	20
83	Electrostatic and potential cation-ï€ forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter. Biochemical Journal, 2008, 410, 391-400.	1.7	20
84	The Ethanol Metabolite Acetaldehyde Increases Paracellular Drug Permeability In Vitro and Oral Bioavailability In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 326-333.	1.3	19
85	Molecular Analysis and Structure-Activity Relationship Modeling of the Substrate/Inhibitor Interaction Site of Plasma Membrane Monoamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 376-385.	1.3	19
86	Dynamin 2 Regulates Riboflavin Endocytosis in Human Placental Trophoblasts. Molecular Pharmacology, 2007, 72, 553-562.	1.0	18
87	Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton. Journal of Biological Chemistry, 2008, 283, 20653-20663.	1.6	17
88	Targeting Drug Transporters – Combining In Silico and In Vitro Approaches to Predict In Vivo. Methods in Molecular Biology, 2010, 637, 65-103.	0.4	17
89	Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. European Journal of Pharmaceutical Sciences, 2017, 103, 52-59.	1.9	17
90	Human bile acid transporter ASBT (SLC10A2) forms functional non-covalent homodimers and higher order oligomers. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 645-653.	1.4	17

#	Article	IF	CITATIONS
91	Sequential processing of human ProIL-1beta by caspase-1 and subsequent folding determined by a combined in vitro and in silico approach. Pharmaceutical Research, 2001, 18, 1083-1090.	1.7	16
92	The Cytosolic Half of Helix III Forms the Substrate Exit Route during Permeation Events of the Sodium/Bile Acid Cotransporter ASBT. Biochemistry, 2009, 48, 8528-8539.	1.2	16
93	Structural Requirements of the ASBT by 3D-QSAR Analysis Using Aminopyridine Conjugates of Chenodeoxycholic Acid. Bioconjugate Chemistry, 2010, 21, 2038-2048.	1.8	15
94	Transmembrane Helix 1 Contributes to Substrate Translocation and Protein Stability of Bile Acid Transporter SLC10A2. Journal of Biological Chemistry, 2011, 286, 27322-27332.	1.6	15
95	Intracellular Ca2+ Release Mediates Cationic but Not Anionic Poly(amidoamine) (PAMAM) Dendrimer-Induced Tight Junction Modulation. Pharmaceutical Research, 2014, 31, 2429-2438.	1.7	15
96	Transmembrane Domain V Plays a Stabilizing Role in the Function of Human Bile Acid Transporter SLC10A2. Biochemistry, 2013, 52, 5117-5124.	1.2	14
97	Determination of membrane protein glycation in diabetic tissue. AAPS PharmSci, 1999, 1, 27-33.	1.3	13
98	Internalization and Subcellular Trafficking of Poly-I-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation. Molecular Pharmaceutics, 2015, 12, 1961-1969.	2.3	12
99	Molecular Basis of Metabolism-Mediated Conversion of PK11195 from an Antagonist to an Agonist of the Constitutive Androstane Receptor. Molecular Pharmacology, 2017, 92, 75-87.	1.0	12
100	cAMP-Coupled Riboflavin Trafficking in Placental Trophoblasts: A Dynamic and Ordered Processâ€. Biochemistry, 2006, 45, 6095-6104.	1.2	11
101	Downregulation of topoisomerase I in differentiating human intestinal epithelial cells. International Journal of Cancer, 2001, 94, 200-207.	2.3	10
102	Drug-prescribing challenges during pregnancy. Current Obstetrics & Gynaecology, 2005, 15, 157-165.	0.2	10
103	Tyrosine Phosphorylation Regulates Plasma Membrane Expression and Stability of the Human Bile Acid Transporter ASBT (<i>SLC</i> 10 <i>A</i> 2). Molecular Pharmaceutics, 2019, 16, 3569-3576.	2.3	10
104	Cytoskeletal scaffolds regulate riboflavin endocytosis and recycling in placental trophoblasts. Journal of Nutritional Biochemistry, 2006, 17, 821-829.	1.9	9
105	Publication Ethics—A Guide for Submitting Manuscripts to Pharmaceutical Research. Pharmaceutical Research, 2010, 27, 1757-1758.	1.7	9
106	Transmembrane Domain II of the Human Bile Acid Transporter SLC10A2 Coordinates Sodium Translocation. Journal of Biological Chemistry, 2013, 288, 32394-32404.	1.6	9
107	Trends in Research and Graduate Affairs in Schools and Colleges of Pharmacy, Part 3: Underrepresented Minorities. American Journal of Pharmaceutical Education, 2020, 84, 7641.	0.7	9
108	Quantification of common and planar bile acids in tissues and cultured cells. Journal of Lipid Research, 2020, 61, 1524-1535.	2.0	8

#	Article	IF	CITATIONS
109	Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1473-1476.	1.0	7
110	Evaluation of the Effect of Ethanol's Toxic Metabolite Acetaldehyde on the Gastrointestinal Oligopeptide Transporter, PEPT1: In Vitro and in Vivo Studies. Alcoholism: Clinical and Experimental Research, 2008, 32, 162-170.	1.4	7
111	Design of high-affinity peptide conjugates with optimized fluorescence quantum yield as markers for small peptide transporter PEPT1 (SLC15A1). Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2555-2557.	1.0	6
112	Putative Irreversible Inhibitors of the Human Sodium-Dependent Bile Acid Transporter (hASBT;) Tj ETQq0 0 0 rgBT Pharmaceutical Research, 2012, 29, 1821-1831.	/Overlock 1.7	10 Tf 50 62 6
113	Computational Modeling of Drug Disposition. , 2006, , 495-512.		5
114	Pregnancy and estradiol modulate myometrial G-protein pathways in the guinea pig. American Journal of Obstetrics and Gynecology, 2006, 195, 275-287.	0.7	4
115	Trends in Research and Graduate Affairs in Schools and Colleges of Pharmacy, Part 2: Students. American Journal of Pharmaceutical Education, 2020, 84, 7642.	0.7	4
116	S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183510.	1.4	3
117	Trends in Research and Graduate Programs in Schools and Colleges of Pharmacy, Part 1: Programs. American Journal of Pharmaceutical Education, 2020, 84, 7643.	0.7	3
118	The Report of the 2012-2013 Research and Graduate Affairs Committee. American Journal of Pharmaceutical Education, 2013, 77, s9.	0.7	2
119	Pharmaceutical Research—Looking Ahead. Pharmaceutical Research, 2009, 26, 491-491.	1.7	1
120	Science Beyond Impact Factors. Pharmaceutical Research, 2009, 26, 743-745.	1.7	1
121	Carrier-Mediated Mechanisms for Cellular Drug Transport. , 2004, , 107-128.		1
122	Microfluidic synthesis of PEGylated liposomes. , 2012, , .		0
123	Identification of Key Amino Acids that Impact Organic Solute Transporter <i>α</i> / <i>β</i> (OSTα/β). Molecular Pharmacology, 2021, 100, 599-608.	1.0	0